Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Cavitation Initiation, Its Development and Link with Flow Turbulence in Diesel Injector Nozzles

2002-03-04
2002-01-0214
The initiation and development of cavitation in enlarged transparent acrylic models of six-hole nozzles for direct injection Diesel engines has been visualised by a high-speed digital video camera in a purpose-built refractive index matching test rig. The obtained high temporal resolution images have allowed improved understanding of the origin of the cavitation structures in Diesel injector nozzles and clarification of the effect of sac geometry (conical mini-sac vs. VCO) on cavitation initiation and development in the nozzle holes. The link between cavitation and flow turbulence in the sac volume and, more importantly, in the injection holes has been quantified through measurements of the flow by laser Doppler velocimetry (LDV) at a number of planes as a function of the Reynolds and cavitation numbers.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

1995-10-01
952356
The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
Technical Paper

Spray and Combustion Development in a Four-Valve Optical DI Diesel Engine

2000-03-06
2000-01-1183
An optical single-cylinder four-valve high speed DI Diesel engine equipped with a high-pressure electronic fuel injection system has been used to obtain information about the spray development, combustion and exhaust emissions (NOx and smoke levels) for a range of operating conditions corresponding to engine speeds between 600 and 1800 rpm, injection pressures up to 1200 bars and fuel injection quantities from idle to full load. Two six-hole vertical mini-sac type injection nozzles with different hole sizes have been employed in order to investigate the effect of nozzle hole diameter on spray formation, combustion and exhaust emissions. Parallel to the experimental programme, a computational investigation of the fuel flow distribution inside the injection system and of the subsequent spray characteristics has been performed in order to assist in the interpretation of the results.
X