Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Headform Impact Safety Design Through Simulation and Testing

2003-03-03
2003-01-1386
Crash safety is a changing area in which safety requirements are updated or added from time to time. A relatively recent federal safety requirement is the amended FMVSS 201 rule for upper interior head impact. The automotive crash safety engineer faces many challenges in designing for this safety criterion. In the current study, it is shown how finite element-based simulation can be used as an effective tool in the design of lightweight headform impact protection countermeasures, supplemented with selective laboratory testing. Additionally, judicious employment of component finite element models and laboratory tests before a new countermeasure concept is deployed in a full vehicle environment leads to robustness and efficiency in product development.
Technical Paper

An Evaluation of Various Viscous Criterion Computational Algorithms

1993-03-01
930100
The viscous criterion (V*C) has been proposed by biomechanics researchers as a generic biomechanical index for potential soft tissue injury. It is defined by the product of the velocity of deformation and the instantaneous compression of torso and abdomen. This criterion requires calculation and differentiation of measured torso/abdomen compression data. Various computational algorithms for calculating viscous criterion are reviewed and evaluated in this paper. These include methods developed by Wayne State University (WSU), NHTSA (DOT) and Ford. An evaluation has been conducted considering the accuracy of these algorithms with both theoretical and experimental data from dummy rib compressions obtained during a crash test. Based on these results, it is found that: V*C results depend on the scheme used in the computation process, the sampling rate and filtering of original raw data. The NHTSA method yields the lowest V*C value.
X