Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Analytical Method for Determining Engine Torque Harmonics for Use With Up Front CAE

1995-05-01
951248
An analytical method for determining engine torque harmonics is presented. The approach employs an engine cycle simulation model to calculate instantaneous cylinder pressure for each operating condition based on engine characteristics that can be determined experimentally and/or analytically. Cylinder pressure is converted to instantaneous torque from which harmonics are determined using an FFT algorithm. A description of the cycle simulation model, including required data, is presented. The method is validated by presenting correlation results at a number of operating conditions (i.e. engine speeds and loads) comparing analytical versus test driveline torque harmonics. Finally, limitations in the method as well as possible extensions to the method are discussed.
Technical Paper

The Effects of Load Control with Port Throttling at Idle- Measurements and Analyses

1989-02-01
890679
An experimental and analytical study was conducted to investigate the effects of load control with port throttling on stability and fuel consumption at idle. With port throttling, the pressure in the intake port increases during the valve-closed period due to flow past the throttle. If the pressure in the port recovers to ambient before the valve overlap period, back flow into the intake system from the cylinder is eliminated. This allows increased valve overlap to be used without increasing the residual mass fraction in the cylinder. Results showed that, with high valve overlap and port throttling, idle stability and fuel consumption can be maintained at values associated with low overlap in a conventionally throttled engine. However, implementation of this concept in production is regarded to require precision-fit and balanced port throttles, an external vacuum pump for vacuum systems support, and revision of the PCV system.
X