Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of the Size, Number and Mass Distribution of the Automotive Particulate Emissions from European Light Duty Vehicles

1998-10-19
982600
Particulate matter in the air has become the focus of increased attention due to the concern of potential health effects. Among other sources, automotive vehicles are seen as a major contributor of fine particles. At present there is limited information available relating either to the number or size distribution of automotive particle emissions and detailed evidence has still to be established. To develop an understanding in the area of automotive particulate emissions a programme was carried out concentrating on tailpipe emissions as measured at the regulated particulate sampling point in a dilution tunnel. A previous literature study by CONCAWE had identified analytical techniques considered to be suitable for this application and which are capable of measuring both mass and number size distributions. Several variations of these techniques are available in the research field and the programme aimed to assess and compare their operation and performance.
Technical Paper

The Effect of Three-Way Catalyst Formulation on Sulphur Tolerance and Emissions from Gasoline Fuelled Vehicles

1994-03-01
940310
In a collaborative programme, the effects of gasoline sulphur content on regulated emissions from three-way catalyst equipped vehicles have been studied. The programme evaluated the sulphur tolerance of three different catalyst formulations on the same range of vehicles. The catalyst chemistries were chosen to be representative of typical current formulations in different markets, as follows: 1. Platinum/Rhodium (Pt/Rh) 2. Platinum/Rhodium/Nickel (Pt/Rh/Ni) 3. Palladium/Rhodium (Pd/Rh) Each vehicle/catalyst combination was tested with fuels containing sulphur at nominal levels of 50, 250 and 450 ppm weight. All fuels were produced using the low sulphur fuel as a base and doping to 250 and 450 ppm S with a mixture of nine sulphur compounds, typical of those actually occurring in European gasolines. The results show clear differences between the magnitudes of the sulphur effect with different catalyst formulations.
Technical Paper

Relative Effects of Vehicle Technology and Fuel Formulation on Gasoline Vehicle Exhaust Emissions

1996-10-01
961901
The effects of fuel formulation changes on vehicles meeting European Stage 1 (91/441/EEC) and Stage II (94/12/EC) emission limits have been investigated. Vehicles in the Euro Stage II fleet were advanced specification versions of the vehicle models in the Euro Stage I fleet. However, the basic engine blocks and capacity were the same. The observed improvements in emissions were attributed to changes, such as position of the catalyst and lambda sensor, improved fuel delivery systems, and to improvements in engine control strategy. These engine modifications resulted in reduced catalyst light-off times and improved AFR control. Emissions improvements, over the modified European test cycle, as a result of these changes were approximately 50% for CO and NOx and 30% for THC. A fuel matrix was designed in order to study the effect of six fuel parameters on exhaust emissions from the two levels of vehicle technology.
X