Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Parametric Study of Transient Turbocharged Diesel Engine Operation from the Second-Law Perspective

2004-03-08
2004-01-1679
A computer analysis is developed for studying the energy and exergy performance of a turbocharged diesel engine, operating under transient load conditions. The model incorporates some novel features for the simulation of transient operation, such as detailed analysis of mechanical friction, separate consideration for the processes of each cylinder during a cycle (“multi-cylinder” model) and mathematical modelling of the fuel pump. The model is validated against experimental data taken from a turbocharged diesel engine, located at the authors' laboratory, operated under transient load conditions. The availability terms for the diesel engine and its subsystems are analyzed, i.e. cylinder for both the open and closed parts of the cycle, inlet and exhaust manifolds, turbocharger and aftercooler.
Technical Paper

Application of a Multi-Zone Combustion Model for the Prediction of Large Scale Marine Diesel Engines Performance and Pollutants Emissions

1999-03-01
1999-01-0227
In the present work a multi-zone combustion model, initially developed for naturally aspirated, high-speed, direct injection diesel engines, is used for studying the performance and emission characteristics of large scale, slow-speed marine diesel engines. Up to now pollutant emissions was not considered a problem in the field of marine engines, since no specific legislation existed. However, the International Maritime Organization (IMO) is forwarding a legislation that will be applicable in the next years concerning soot and nitric oxide (NO) emissions. This legislation will make it impossible for vessels to enter the native waters into countries where this legislation applies. Due to this fact, engine manufacturers are making serious efforts to design new engine builds with reduced soot and nitric oxide emissions using new designs and exhaust gas aftertreatment systems.
X