Refine Your Search

Search Results

Viewing 1 to 19 of 19
Standard

HIGH-STRENGTH, HOT-ROLLED STEEL PLATES, BARS, AND SHAPES

1993-11-01
HISTORICAL
J1442_199311
This SAE Recommended Practice covers six levels of high strength carbon and high-strength low-alloy steel plates, bars, and shapes for structural use. The six strength levels are 290, 345, 415, 450, 485, and 550 MPa or 42, 50, 60, 65, 70, and 80 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. Because the chemical compositions may vary significantly among the producers, despite the required mechanical properties being the same, it is important that the fabricator consult with the producer to determine the relative effects of the producer's composition on the forming, welding, and field service requirements.
Standard

PRODUCT ANALYSIS - PERMISSIBLE VARIATIONS FROM SPECIFIED CHEMICAL ANALYSIS OF A HEAT OR CAST OF STEEL

1990-12-01
HISTORICAL
J409_199012
Supplementary to the heat or cast analysis, a product analysis may be made on steel in the semifinished or finished form. For definitions and methods of sampling steel for product chemical analysis, refer to SAE J408. A product analysis is a chemical analysis of the semifinished or finished steel to determine conformance to the specification requirements. The range of the specified chemical composition is normally expanded to take into account deviations associated with analytical reproducibility and the heterogeneity of the steel. Individual determinations may vary from the specified heat or cast analysis ranges or limits to the extent shown in Tables 1 through 5. The several determinations of any element in a heat or cast may not vary both above and below the specified range except for lead. Tables 1 through 5 provide permissible limits for various steel forms and composition types.
Standard

HARDENABILITY BANDS FOR CARBON AND ALLOY H STEELS

1993-06-01
HISTORICAL
J1268_199306
H steels and their corresponding minimum and maximum hardenability limits are shown for all of the carbon and alloy steels for which there are sufficient hardenability data and for grades that can use the standard end quench test. As hardenability data are accumulated for other grades, this SAE Standard will be revised to include such grades.
Standard

HARDENABILITY BANDS FOR CARBON AND ALLOY H STEELS

1995-05-01
HISTORICAL
J1268_199505
All carbon and alloy H-band steels are shown, along with their corresponding minimum and maximum hardenability limits, for which sufficient hardenability data have been established and for grades which use the standard end-quench test. As hardenability data are accumulated for other grades, this SAE Standard will be revised to include such grades.
Standard

Chemical Compositions of SAE Alloy Steels

2000-06-28
HISTORICAL
J404_200006
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Divison 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

CHEMICAL COMPOSITIONS OF SAE ALLOY STEELS

1991-02-01
HISTORICAL
J404_199102
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference J408). To avoid the possibility of confusion and conflict between SAE and AISI steel designations, all proposed changes in compositions, additions, or deletions of numbers will be coordinated between the two organizations. The compositions in this SAE Standard may apply to open hearth and basic oxygen, or electric furnace steels. Grades shown in Tables 1A and 1B with prefix letter E are normally made by the electric furnace process with maximum limits of 0.035% phosphorus and 0.040% sulfur.
Standard

Chemical Compositions of SAE Carbon Steels

2000-06-28
HISTORICAL
J403_200006
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Carbon Steels

2001-11-26
HISTORICAL
J403_200111
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
X