Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Porosity Control in Ti-13Nb-13Zr Alloy Produced by Powder Metallurgy

2006-11-21
2006-01-2545
Titanium and titanium alloys are excellent candidates for aerospace and surgical implants applications owing to their high strength to weight ratio and good corrosion resistance. Among the titanium alloys recently developed, Ti-13Nb-13Zr is distinguished for presenting low modulus of elasticity, high mechanical resistance and superior biocompatibility, suitable for springs, bellows, surgical implants and aerospace parts with high resistance to shock and explosion damage. The alloys processing by powder metallurgy eases the obtainment of parts with complex geometry and near-net shape. In this work, results of the porosity control in the Ti-13Nb-13Zr alloy produced by powder metallurgy are presented. The samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the porosity level depends on the compaction pressures, sintering temperatures and holding times.
Technical Paper

Developing of New Titanium Alloys by Powder Metallurgy for Aerospace Applications

2003-11-18
2003-01-3605
Titanium alloys parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent general corrosion resistance. Despite these attractive features, use of titanium alloys in engines and airframes is limited by cost. The alloys processing by powder metallurgy eases the obtainment of parts with complex geometry and probably, cheaper. In this work, results of the Ti-6A1-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr alloys production are presented. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering at 1500 C, in vacuum. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method.
Technical Paper

Sintering of Titanium Alloys for Advanced Aerospace Systems

2005-11-22
2005-01-4180
Titanium alloys parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. Despite these features, use of titanium alloys in engines and airframes is limited by cost. The alloys processing by powder metallurgy (P/M) eases the obtainment of parts with complex geometry. In this work, results of the Ti-6Al-4V alloys production are presented. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 up to 1500 °C, in vacuum. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively.
X