Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Heavy-Duty Gasoline Engine - An Alternative to Meet Emissions Standards of Tomorrow

2004-03-08
2004-01-0984
A technology path has been identified for development of a high efficiency, durable, gasoline engine, targeted at achieving performance and emissions levels necessary to meet heavy-duty, on-road standards of the foreseeable future. Initial experimental and numerical results for the proposed technology concept are presented. This work summarizes internal research efforts conducted at Southwest Research Institute. An alternative combustion system has been numerically and experimentally examined. The engine utilizes gasoline as the fuel, with a combination of enabling technologies to provide high efficiency operation at ultra-low emissions levels. The concept is based upon very highly-dilute combustion of gasoline at high compression ratio and boost levels. Results from the experimental program have demonstrated engine-out NOx emissions of 0.06 g/hp/hr, at single-cylinder brake thermal efficiencies (BTE) above thirty-four percent.
Technical Paper

Effect of Reduced Boost Air Temperature on Knock Limited Brake Mean Effective Pressure (BMEP)

2001-09-24
2001-01-3682
The effect of low temperature intake air on the knock limited brake mean effective pressure (BMEP) in a spark ignited natural gas engine is described in this paper. This work was conducted to demonstrate the feasibility of using the vaporization of liquefied natural gas (LNG) to reduce the intake air temperature of engines operating on LNG fuel. The effect on steady-state emissions and transient response are also reported. Three different intake air temperatures were tested and evaluated as to their impact upon engine performance and gaseous emissions output. The results of these tests are as follows. The reduced intake air temperature allowed for a 30.7% (501 kPa) increase in the knock-limited BMEP (comparing the 10°C (50°F) intake air results with the 54.4°C (130°F) results). Exhaust emissions were recorded at constant BMEP for varying intake air temperatures.
Technical Paper

Effects of Fuel Parameters on FTP Emissions of a 1998 Toyota with a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1907
The effects of fuel properties on the emissions of a production vehicle with a gasoline direct injection engine operating over the Federal Test Procedure (FTP) cycle were investigated. The vehicle used was a 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine. Engine-out and tailpipe FTP emissions for six fuels and a California Phase 2 RFG reference fuel are presented. Four of the test fuels were blended from refinery components to meet specified distillation profiles. The remaining test fuels were iso-octane and toluene, an iso-alkane and an aromatic with essentially the same boiling point (at atmospheric pressure) that is near the T50 point for the blended fuels. Statistically significant effects, at the 95% confidence level, of the fuels on tailpipe emissions were found. Correlations were sought between the properties of the five blends and the Emissions Indices for engine-out hydrocarbons and NOx and for tailpipe particulates.
Technical Paper

Effect of Fuel Parameters on Speciated Hydrocarbon Emissions from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1908
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested over the Federal Test Procedure (FTP) driving cycle. Speciated engine-out hydrocarbon emissions were measured. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. One of the blended fuels was CARB Phase 2 reformulated gasoline which was used as the reference fuel. The remaining four blended fuels were made from refinery components to meet specified distillation profiles. The pure hydrocarbon fuels were iso-octane and toluene - an alkane and an aromatic with essentially identical boiling points. The five blended fuels can be grouped to examine the effects of fuel volatility and MTBE. Additionally, correlations were sought between the fuel properties and the Specific Reactivity, the exhaust “toxics”, and the pass-through of unburned fuel species.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
X