Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Method for Comparing Transient NOx Emissions With Weighted Steady State Test Results

1998-02-23
980408
This paper describes a method used to compare the emissions from transient operation of an engine with the emissions from steady state operating modes of the engine. Weightings were assigned to each mode based on the transient cycle under evaluation. The method of assigning the weightings for each mode took into account several factors, including the distance between each second of the transient cycle's speed-and-torque point requests (in a speed vs. torque coordinate system) and the given mode. Two transient cycles were chosen. The transient cycles were taken from actual in-use data collected on nonroad engines during in-field operation. The steady state modes selected were based on both International Standard Organization (ISO) test modes, as well as, augmentation based on contour plots of the emissions from nonroad diesel engines. Twenty-four (24) steady-state modes were used. The transient cycle's speed-and-torque points are used to weight each steady state mode in the method.
Technical Paper

Running Loss Emissions From Gasoline-Fueled Motor Vehicles

1993-11-01
931991
A significant source of volatile organic compounds occurs from fuel evaporation during operation of gasoline-fueled vehicles. This source, known as running loss emissions, has been modelled in the past using the Reid Vapor Pressure (RVP) as the only measure of fuel volatility. A correlation is proposed which relates running loss emissions to measures of fuel volatility at temperatures experienced in use. Ambient temperature, fuel volatility, and, in some cases, drive duration are incorporated into a single correlation. One experimental program shows fuel differences other than RVP have an effect on emissions. Another program is used to estimate in-use running loss emissions. Finally, the in-use emissions are estimated by accounting for ambient temperature, drive duration, and hourly travel fraction.
Technical Paper

Reformulated Gasoline Effects on Exhaust Emissions: Phase II: Continued Investigation of the Effects of Fuel Oxygenate Content, Oxygenate Type, Volatility, Sulfur, Olefins and Distillation Parameters

1994-10-01
941974
This study is the second in a series of three EPA studies to investigate the effect of fuel reformulations and modifications on exhaust emissions. Both the first and second study in this series of studies were used to support the development of EPA's complex model for the certification of reformulated gasolines. Phase I of the study tested eight fuels on forty vehicles. This study, termed Phase II, tested twelve fuels on a separate fleet of 39 light-duty vehicles. The Phase II fuel parameters studied included Reid Vapor Pressure (RVP), the 50% and 90% evaporated distillation temperatures (T50 and T90), sulfur content, aromatics content, olefin content, oxygenate type and oxygen content. Measured exhaust emissions included total hydrocarbons (THC), oxides of nitrogen (NOx), carbon monoxide (CO), carbon dioxide (CO2), benzene, 1,3-butadiene, acetaldehyde and formaldehyde.
Technical Paper

Reformulated Gasoline Effects on Exhaust Emissions: Phase I: Initial Investigation of Oxygenate, Volatility, Distillation and Sulfur Effects

1994-10-01
941973
This study was the first of three EPA studies to investigate the effect of gasoline fuel parameters on hydrocarbon, nonmethane hydrocarbon, nitrogen oxides, benzene, formaldehyde, and acetaldehyde exhaust emissions of 1990 model year or equivalent vehicles. The fuel parameters tested in this program were oxygen concentration, Reid Vapor Pressure (RVP), ninety percent evaporative distillation temperature (T90), and sulfur concentration. Sulfur concentration was found to have the greatest effect on hydrocarbon and nitrogen oxide emissions. Increasing oxygen concentration and RVP reduction was found to reduce hydrocarbon emission more for high-emitting than normal-emitting vehicles. Oxygenate concentration was found to have a significant effect on aldehyde emissions.
Technical Paper

Reformulated Gasoline Effects on Exhaust Emissions: Phase III; Investigation on the Effects of Sulfur, Olefins, Volatility, and Aromatics and the Interactions Between Olefins and Volatility or Sulfur

1995-02-01
950782
A vehicle test program was conducted at the Environmental Protection Agency's National Vehicle and Fuel Emissions Laboratory to provide data on the relationship between fuel properties and exhaust emissions of nonmethane hydrocarbons (NMHC), NOx, and CO. This study, Phase III, is the third in a series of programs sponsored by the Agency. This Phase III program consisted of 19 light-duty high and normal emitting vehicles tested on 10 different fuels. The properties for each test fuel were specified in order to examine seven separate fuel effects on exhaust emissions; interactions between olefins and volatility, interactions between olefins and sulfur, very high and very low levels of sulfur, low levels of aromatics, low volatility, and low levels of olefins. For all of the fuels tested, the normal emitter vehicles produced greater percentage reductions than the high emitters. The data in this work showed lower NMHC emission reduction than predicted by the complex model.
Technical Paper

The Effect of Gasoline Reformulation and Sulfur Reduction on Exhaust Emissions from Post-1983 but Pre-1990 Vehicles

1995-02-01
950778
Ten post-1981 and pre-1990 vehicles were tested to determine if the effect of gasoline reformulation would be different than predicted by the EPA complex model. All vehicles passed the IM-240 screening before fuel testing. A nonoxygenated baseline and four oxygenated test fuels with varying levels of sulfur and RVP were tested for exhaust emissions. The emission response of the fuel changes with these vehicles was similar to that predicted by the complex model. However, the NOx emissions of the vehicles in this study were less sensitive to sulfur level than complex model predicts. Also, the oxygenated reformulated gasolines regardless of sulfur level produced greater reductions in NMHC emissions than predicted by the complex model.
X