Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Knocking Syndrome - Its Cure and Its Potential

1998-10-19
982483
In his paper “The Knock Syndrome - its Cures and its Victims” (SAE 841339) Oppenheim proposed to change the whole process of the internal combustion engine replacing moving flames by homogeneous and simultaneous combustion. Intensive research work on flame propagation and auto-ignition phenomena led to new insights into combustion over recent years. The implementation of auto-ignition on two-stroke S.I. engines revealed the potential for simultaneous reductions in fuel consumption and NOx emission. Deploying the principle for the four-stroke piston engine and standard fuel would provide optimum conditions for application in common vehicles. The basic problem of homogeneous combustion is presented and some options of control are discussed. A methodology is proposed to apply a new type of combustion simply through a consistent combination of modern technology available for the S.I. engine.
Technical Paper

Specifics of Daimler's new SCR system (BLUETEC) in the Diesel Sprinter Van - Certified for NAFTA 2010

2010-04-12
2010-01-1172
Beginning in 2010, Daimler's well-known Diesel Sprinter van has to fulfill the new and clearly tighter NOx emission standards of NAFTA10 (EPA, CARB). This requires an integrated approach of further engine optimizations and the implementation of an innovative exhaust aftertreatment technology. The goal was to develop an overall concept which meets simultaneously the tightened emission standards (including OBD limits) and the increasing customer demands of more power and torque without losing the high fuel efficiency of the small and highly efficient 3-liter V6 diesel engine OM642, which already has been installed in the NAFTA07 Sprinter. In the early stages of the concept phase, the most appropriate NOx aftertreatment technology and certification form (engine or vehicle) had to be selected for this specific vehicle class in the van segment with enhanced requirements to durability, economical efficiency and specific driving behavior.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
X