Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Journal Article

HIC(d) and Its Relation With Headform Rotational Acceleration in Vehicle Upper Interior Head Impact Safety Assessment

2008-04-14
2008-01-0186
Upper interior head impact safety is an important consideration in vehicle design and is covered under FMVSS 201. This standard generally requires that HIC(d) should not exceed 1000 when a legitimate target in the upper interior of a vehicle is impacted with a featureless Hybrid III headform at a velocity of 15 mph (6.7 m/s). As HIC and therefore HIC(d) is based on translational deceleration experienced at the CG of a test headform, its applicability is often doubted in protection against injury that can be caused due to rotational acceleration of head during impact. A study is carried out here using an improved lumped parameter model (LPM) representing headform impact for cases in which moderate to significant headform rotation may be present primarily due to the geometric configuration of targets.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

Effect of Boot Compliance in Numerical Model of Hybrid III in Vertical Loading

2016-04-05
2016-01-1525
Numerical models of Hybrid III had been widely used to study the effect of underbody blast loading on lower extremities. These models had been primarily validated for automotive loading conditions of shorter magnitude in longer time span which are different than typical blast loading conditions of higher magnitude of shorter duration. Therefore, additional strain rate dependent material models were used to validate lower extremity of LSTC Hybrid III model for such loading conditions. Current study focuses on analyzing the mitigating effect of combat boots in injury responses with the help of validated LSTC Hybrid III model. Numerical simulations were run for various impactor speeds using validated LSTC Hybrid III model without any boot (bare foot) and with combat boot.
Technical Paper

Optimization Design of FoamIPillar for Head Impact Protection Using Design of Experiment Approach

1997-04-08
971543
This paper presents a method to obtain improved foam/pillar structural designs to help enhance occupant interior impact protection. Energy absorbing foams are used in this study with their thickness and crush strength being selected as primary design variables for optimization. The response surface techniques in the design of experiment are used in the optimization process. Head impact analyses are conducted by a CAE model with explicit, nonlinear, dynamic finite element code LS-DYNA3D. A baseline model is developed and verified by comparing the simulation results with the experimental data. Based on this model, the anticipated effects of stiffness of the pillar structure and the trim on the Head Injury Criterion (HIC) results are also assessed. The optimization approach in this study provides a comprehensive consideration of the factors which affect the HIC value.
Technical Paper

Analytical Studies of the Head Injury Criterion (HIC)

1974-02-01
740082
The Head Injury Criterion (HIC) in FMVSS 208 for evaluating the potential head injury requires maximization of a mathematical expression, involving the time-average acceleration, by varying the limits (t1, t2) of the time interval over which the average is calculated. This paper describes the HIC behavior through the analysis of a function of two independent variables t1 and t2. The analysis is carried out for any arbitrary acceleration profile a(t). It is found that maximization requires that a(t1) = a(t2). Also, for the unique values of t1 and t2 that maximize HIC, the average acceleration between t1 and t2 is 5/3 times the acceleration at t1 or t2. Illustrative examples are provided by applying this condition to simple pulses. Numerical results are presented in tables and graphs.
Technical Paper

Study on the Key Preload Performance Parameters of an Active Reversible Preload Seatbelt (ARPS)

2018-04-03
2018-01-1175
In order to provide an improved countermeasure for occupant protection, a new type of active reversible preload seatbelt (ARPS) is presented in this paper. The ARPS is capable of protecting occupants by reducing injuries during frontal collisions. ARPS retracts seatbelt webbing by activating an electric motor attached to the seatbelt retractor. FCW (Forward Collision Warning) and LDW (Lane Departure Warning) provide signals as a trigger to activate the electric motor to retract the seatbelt webbing, thus making the occupant restraint system work more effectively in a crash. It also helps reduce occupant’s forward movement during impact process via braking. Four important factors such as preload force, preload velocity and the length and timing of webbing retraction play influential roles in performance of the ARPS. This paper focuses on studying preload performance of ARPS under various test conditions to investigate effects of the aforementioned factors.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Journal Article

A Method for Determining the Vehicle-to-Ground Contact Load during Laboratory-based Rollover Tests

2008-04-14
2008-01-0351
Many rollover safety researches have been conducted experimentally and analytically to investigate the underlying causes of vehicle accidents and develop rollover test procedures and test methodologies to help understand the nature of rollover crash events. In addition, electronic and/or mechanical instrumentation are used in dummy and vehicle to measure their responses that allow both vehicle kinematics study and occupant injury assessment. However, method for measurement of dynamic structural deformation needs further exploration, and means to monitor vehicle-to-ground contact load is still lacking. Thus, this paper presents a method for determining the vehicle-to-ground load during laboratory-based rollover tests using results obtained from a camera-matching photogrammetric technology as inputs to a FE SUV model using a nonlinear crash analysis code.
Technical Paper

Influence of System Variables on Interior Head Impact Testing

1995-02-01
950882
Head Impact Criterion (HIC) numbers obtained from interior head impact testing with the NHTSA-designed Free Motion Headform (FMH) are influenced by many variables. The high level of variability experienced in the NHTSA-proposed Interior Head Impact Test presents a challenge to today's automotive engineers. Primary contributors to HIC variability include (1) impact speed, (2) headform calibration performance, (3) design/build part variation, and (4) target point impact accuracy. This study shows that controlling these variables during testing can improve test data repeatability and reproducibility, as well as reduce design and testing time.
X