Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Collection Efficiency and Ice Accretion Calculations for a Boeing 737-300 Inlet

1996-10-01
965570
Collection efficiency and ice accretion calculations have been made for a Boeing 737-300 inlet using a three-dimensional panel code, an adaptive grid code, the NASA Lewis LEWICE3D grid based ice accretion code. Flow solutions for the inlet were generated using the VSAERO panel code. Grids used in the ice accretion calculations were generated using the newly developed adaptive grid code ICEGRID3D. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Power Challenge computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes looked reasonable and appeared representative of the rime and mixed icing conditions for which they were calculated.
Technical Paper

Collection Efficiency and Ice Accretion Characteristics of Two Full Scale And One 1/4 Scale Business Jet Horizontal Tails

2000-05-09
2000-01-1683
Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25% scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data.
X