Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design and Testing of an Active Suspension System for a 2-1/2 Ton Military Truck

2005-04-11
2005-01-1715
The University of Texas Center for Electromechanics (UT-CEM) has been developing active suspension technology for off-road vehicles since 1993. The UT-CEM approach employs fully controlled electromechanical actuators to control vehicle dynamics and passive springs to efficiently support vehicle static weight. The project described in this paper is one of a succession of projects toward the development of effective active suspension systems, primarily for heavy off-road vehicles. Earlier projects targeted the development of suitable electromechanical actuators. Others contributed to effective control electronics and associated software. Another project integrated a complete system including actuators, power electronics and control system onto a HMMWV and was demonstrated at Yuma Proving Grounds in Arizona.
Technical Paper

Electromechanical Active Suspension Demonstration for Off-Road Vehicles

2000-03-06
2000-01-0102
The University of Texas Center for Electromechanics (UT-CEM) has been developing active suspension technology for off-road and on-road vehicles since 1993. The UT-CEM approach employs fully controlled electromechanical (EM) actuators to control vehicle dynamics and passive springs to efficiently support vehicle static weight. The program has completed three phases (full scale proof-of-principle demonstration on a quarter-car test rig; algorithm development on a four-corner test rig; and advanced EM linear actuator development) and is engaged in a full vehicle demonstration phase. Two full vehicle demonstrations are in progress: an off-road demonstration on a high mobility multiwheeled vehicle (HMMWV) and an on-road demonstration on a transit bus. HMMWV test results are indicating significant reductions in vehicle sprung mass accelerations with simultaneous increases in cross-country speed when compared to conventional passive suspension systems.
X