Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis of Combustion Parameters and Their Relation to Operating Variables and Exhaust Emissions in an Upgraded Multivalve Bi-Fuel CNG SI Engine

2004-03-08
2004-01-0983
The combustion propagation and burned-gas expansion processes in a bi-fuel CNG SI engine were characterized by applying a newly developed diagnostic tool, in order to better understand how these processes are related to the fuel composition, to the engine operating variables as well as to the exhaust emissions. The diagnostic tool is based on an original multizone heat-release model that is coupled with a CADmodel of the burned-gas containing surface for the computation of the burning speed and the burned-gas mean expansion velocity. Furthermore, the thermal and prompt NO sub-models, embedded in the diagnostic code, were employed to study the effects ofNO formation mechanisms and thermodynamic parameters on nitric oxide emissions.
Technical Paper

High-Boost C.R. Diesel Engine: A Feasibility Study of Performance Enhancement and Exhaust-Gas Power Cogeneration

2002-10-21
2002-01-2814
The present work concerns the study of the potentialities of high-boost small-displacement C.R. (Common Rail) diesel engines where the compressor and the expander are mechanically disengaged for the purpose of power cogeneration from the exhaust gas. This objective can be achieved by means of advanced concept electrical devices capable of delivering the energy produced by the expander either to the drivetrain transmission or to the even more power-demanding auxiliary equipment of both the engine and the vehicle. The performance of a small-displacement boosted diesel engine with a common-rail injection system has been predicted by means of a computational code obtained by integrating different in-house non-commercial codes that simulate the intake, combustion and exhaust processes. The model validation has been carried out by means of the experimental data obtained at Fiat Research Center on a commercial small-displacement C.R. turbocharged diesel engine.
Technical Paper

Unsteady Convection Model for Heat Release Analysis of IC Engine Pressure Data

2000-03-06
2000-01-1265
A contribution has been given to the thermodynamics approach usually used for analyzing the combustion process in IC engines on the basis of cylinder pressure data reduction. A survey of heat release type combustion models and of their calibration methods has first been carried out with specific attention paid to the bulk gas-wall heat transfer correlations used. Experimental results have given evidence that most of these correlations are incapable of predicting the phase shift occurring between the gas-wall temperature difference and the heat transfer during the engine compression and expansion strokes, owing to the transient properties of the fluid directly in contact with the wall. This work develops and applies a refined procedure for heat release analysis of cylinder pressure data including the unsteadiness effects of the convective heat transfer process.
X