Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

Calibration of an RGB, CCD Camera and Interpretation of its Two-Color Images for KL and Temperature

2005-04-11
2005-01-0648
The two-color method for measuring temperature and optical thickness of soot (KL) has become a standard diagnostic tool for the evaluation of engine designs and technologies relative to soot formation and flame temperature. Implementation of the two-color technique typically requires two cameras or a set of half-pass mirrors and optical narrow band-pass filters. In this paper, a technique for collecting and interpreting two-color images with a single calibrated camera without image splitting and filtering hardware is demonstrated and discussed. This method uses a relatively inexpensive commercial, 10-bit, RGB color, CCD camera capable of 16 μs exposure times. The CCD has published spectral response curves in the visible range, but a method for obtaining the spectral response for the optical system using a monochromator is discussed.
X