Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Regeneration Strategies for NOx Adsorber Catalysts

1997-10-01
972845
The successful commercialization of lean burn gasoline engines is dependent upon development of an effective emission aftertreatment system which can provide HC, CO, and NOx control not only under lean operating conditions, but also when the engine operates at the stoichiometric point under conditions of high engine speed and/or load. NOx adsorber catalysts (NOx traps) are capable of storing NOx under lean condition, and subsequently releasing and catalyzing its reduction under conditions rich of the stoichiometric point. Aftertreatment systems based on these types of catalysts show great potential for reaching current and future emission standards. Key to the successful application of NOx adsorber catalysts is the development of engine control strategies which maximize NOx conversion while minimizing the fuel economy penalty associated with adsorber regeneration. In this paper limitations associated with NOx trap adsorption and regeneration strategies are discussed.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Dual-Catalyst Underfloor LEV/ULEV Strategies for Effective Precious Metal Management

1999-03-01
1999-01-0776
Dual-brick catalyst systems containing Pd-only catalysts followed by Pt/Rh three-way catalysts (TWCs) provide an effective strategy for managing Pt, Pd and Rh precious metal inventories while achieving LEV/ULEV emission standards. Engine aged dual-brick converters containing front Pd catalysts followed by rear Pd/Rh or Pt/Rh TWCs demonstrated LEV emission levels in an underfloor location on a TLEV calibrated 3.8L vehicle, and achieved ULEV emissions with air addition. Using identical advanced washcoat formulations stabilized with ceria-zirconia promoters, single-brick Pt/Rh TWCs demonstrated equivalent performance to Pd/Rh TWCs after thermally severe aging, and dual-brick [Pd + Pt/Rh] systems also had equivalent performance to [Pd + Pd/Rh] catalyst systems. While a Pd-only system also achieved 100K mi equivalent LEV emissions, both dual-brick options lowered emissions further using substantially lower loadings and more balanced precious metal usage.
Technical Paper

NOx Performance Degradation of Aftertreatment Architectures Containing DOC with SCR on Filter or Uncatalyzed DPF Downstream of DEF Injection

2019-04-02
2019-01-0740
SCR on filter, also known as SCRoF, SCRF, SDPF, has been utilized to meet the stringent light duty Euro 6 emission regulations. Close-coupled DOC-DEF-SCR on filter with underfloor SCR architectures, offer a balance of NOx performance at cold start and highway driving conditions. In contrast, the DOC-DPF-DEF-SCR architecture has been most commonly selected to meet the on-road and non-road heavy duty emission regulations worldwide. Diesel engines applied to off road vehicles can operate under higher loads for extended times, producing higher exhaust temperatures and engine out NOx emissions. New European Stage V emission regulations will mandate diesel particulate filter (DPF) adoption because of particulate number and more stringent particulate mass requirements. Three aftertreatment architecture choices with diesel particulate filters (DPF) were evaluated as candidates to fulfill the Stage V emission regulations.
X