Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Development and Validation of a Quasi-Dimensional Dual Fuel (Diesel – Natural Gas) Combustion Model

2017-03-28
2017-01-0517
This paper presents a newly developed quasi-dimensional multi-zone dual fuel combustion model, which has been integrated within the commercial engine system simulation framework. Model is based on the modified Multi-Zone Combustion Model and Fractal Combustion Model. Modified Multi-Zone Combustion Model handles the part of the combustion process that is governed by the mixing-controlled combustion, while the modified Fractal Combustion Model handles the part that is governed by the flame propagation through the combustion chamber. The developed quasi-dimensional dual fuel combustion model features phenomenological description of spray processes, i.e. liquid spray break-up, fresh charge entrainment, droplet heat-up and evaporation process. In order to capture the chemical effects on the ignition delay, special ignition delay table has been made.
Journal Article

A Model for Prediction of Knock in the Cycle Simulation by Detail Characterization of Fuel and Temperature Stratification

2015-04-14
2015-01-1245
Development of SI engines to further increase engine efficiency is strongly affected by the occurrence of engine knock. Engine knock has been widely investigated over the years and the main promoting parameters have been identified as load (temperature and pressure), mixture composition, engine speed, characteristic of the fuel, combustion chamber design, and etc. In this paper a new model for predicting engine knock in 0-D environment is presented. The model is based on the well-known approach of using a Livengood and Wu knock integral. Ignition delay data that are supplied to the knock integral are for specific fuel calculated by detail chemical kinetics and are comprised of low temperature heat release ignition delay and high temperature heat release ignition delay. Next, the cycle to cycle variations of engine and temperature stratification of the end gas have to be taken into account.
Technical Paper

The Optimization of the Dual Fuel Engine Injection Parameters by Using a Newly Developed Quasi-Dimensional Cycle Simulation Combustion Model

2018-04-03
2018-01-0261
The paper presents the optimization of injection parameters of directly injected fuel in the dual fuel engine operation. The optimization is performed numerically by using a cycle simulation model of the considered engine. In the cycle simulation model, combustion is simulated by a newly developed quasi-dimensional dual fuel combustion model. The model is based on the modified multi-zone combustion model and the quasi-dimensional combustion model. The modified multi-zone combustion model handles the part of the combustion process that is governed by the mixing-controlled combustion, while the modified quasi-dimensional combustion model handles the part that is governed by the flame propagation through the combustion chamber. The developed dual fuel combustion model features a phenomenological description of spray processes, i.e. the liquid spray break-up, fresh charge entrainment, droplet heat-up, and evaporation processes.
Technical Paper

Development of Numerical Framework for Research of the Pre-Chamber SI Combustion

2022-03-29
2022-01-0387
A promising strategy for increasing thermal efficiency and decreasing emissions of a spark ignited (SI) internal combustion engine is the application of lean mixtures. The flammability limit of lean mixtures can be increased by using an active pre-chamber containing an injector and a spark plug, resulting in a combustion mode commonly called Turbulent Jet Ignition (TJI). The optimization of the combustion chamber shape and operating parameters for TJI combustion can be a demanding task, since the number of design parameters is significantly increased and is today supported by numerical simulations. In this paper, the process of the development of a numerical framework based on 3D CFD and 1D/0D numerical models that will support the research of the pre-chamber design and optimization of operating parameters will be shown. For 3D CFD modelling the AVL Fire™ code is employed, where the full combustion chamber model with intake and exhaust ports of the experimental engine is prepared.
Technical Paper

Numerical Simulations of Pre-Chamber Induced HCCI Combustion (PC-HCCI)

2023-04-11
2023-01-0274
Advanced combustion concepts that rely on the lean-burn approach are a proven solution for increasing the efficiency and reducing the harmful emissions of SI engines. The pre-chamber spark ignited (PCSI) engines utilize high ignition energy of the multiple jets penetrating from the pre-chamber, to enable fast and stable combustion of lean mixture in the main chamber. The combustion is still governed by the flame propagation, so the dilution level and efficiency benefits are highly restricted by strong decrease of laminar flame speeds. Homogeneous charge compression ignition (HCCI) combustion allows a higher dilution level due to rapid chemically driven combustion, however the inability to directly control the ignition timing has proven to be a major setback in HCCI deployment.
X