Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

A Model for Prediction of Knock in the Cycle Simulation by Detail Characterization of Fuel and Temperature Stratification

2015-04-14
2015-01-1245
Development of SI engines to further increase engine efficiency is strongly affected by the occurrence of engine knock. Engine knock has been widely investigated over the years and the main promoting parameters have been identified as load (temperature and pressure), mixture composition, engine speed, characteristic of the fuel, combustion chamber design, and etc. In this paper a new model for predicting engine knock in 0-D environment is presented. The model is based on the well-known approach of using a Livengood and Wu knock integral. Ignition delay data that are supplied to the knock integral are for specific fuel calculated by detail chemical kinetics and are comprised of low temperature heat release ignition delay and high temperature heat release ignition delay. Next, the cycle to cycle variations of engine and temperature stratification of the end gas have to be taken into account.
Technical Paper

Introducing Initial Conditions with Non-uniform Mixtures and Fuel Injection into the Multi Zone HCCI Simulation Model

2010-04-12
2010-01-1083
As a contribution to the research into HCCI engines which have a potential of achieving low fuel consumption with low particulate and low NOx emissions, a six zone simulation model coupled with the cycle simulation code AVL Boost was previously developed. The model uses comprehensive chemical kinetics and shows good agreement with experimental results. At the point of transition from the gas exchange process to the high pressure cycle, which is multi-zonal, the model assumes equal gas mixtures in all zones. Therefore, the model is suitable for perfectly homogeneous mixtures, and since it has no ability to receive fuel during compression, the mixture has to be prepared outside the cylinder. Further development of this model, which will be shown in this paper, includes the introduction of initial conditions with non-uniform mixtures and the possibility of receiving fuel during compression.
Technical Paper

Numerical Study of Influencing Factors and the Possibility to Use Vibe Parameters in Crank-Angle Resolved HCCI Control Models

2011-04-12
2011-01-0906
Today, the potential of HCCI engines, i.e., their high efficiency with low NO and particulate emissions, is very well known. Besides this potential, the problems that are related to HCCI engines, particularly the control, are also known issues. In order to be able to develop and assess the control strategies for HCCI engines, one needs models for the control development. In addition to mean value models crank-angle resolved control-oriented computer codes have also been developed lately (e.g., Boost RT). In these codes, complex 1D gas dynamics and complex combustion models are omitted, while the in-cylinder calculation is crank-angle resolved. Simple combustion models are variations of Vibe and the combustion defined by a table. Since the HCCI combustion is controlled by the state of the gas in the cylinder, parameters of Vibe functions depend on the factors that define this state.
Technical Paper

Implementation of a Single Zone k-ε Turbulence Model in a Multi Zone Combustion Model

2012-04-16
2012-01-0130
Research into internal combustion engines requires the development of engine simulation models which should ensure acceptable results of engine performances over a wide range of engine speeds and loads. Due to high costs of experiments and a rapid increase in the computer power, researches all over the world devote great effort to the development and improvement of simulation models. Well-known multi-dimensional simulation models (CFD models) of the engine cycle are the most demanding models in terms of computational resources. On the other hand, there are multi-zone models that are very robust and that are able to capture a certain in-cylinder property during the engine operating cycle. It is known that turbulence effects inside engine cylinder play an important role in the combustion process. In order to properly predict combustion process, characteristics of the turbulent flow field should also be accurately defined.
Technical Paper

Experimentally Supported Modeling of Cycle-to-Cycle Variations of SI Engine Using Cycle-Simulation Model

2014-04-01
2014-01-1069
The paper presents modeling of cycle-to-cycle variations (CCV) of a SI engine by using the modified cycle-simulation model. The presented research has been performed on CFR engine fueled by gasoline. Experimental in-cylinder pressure traces of 300 cycles have been processed for several operating points representing the spark sweep which captured the operating points with low and high CCV. The cycle-simulation model applied in this study uses significantly improved turbulence and combustion model that have been implemented into the cycle-simulation code. Developed k-ε turbulence model and the quasi-dimensional combustion model based on the fractal theory have been applied.
Technical Paper

Development of Numerical Framework for Research of the Pre-Chamber SI Combustion

2022-03-29
2022-01-0387
A promising strategy for increasing thermal efficiency and decreasing emissions of a spark ignited (SI) internal combustion engine is the application of lean mixtures. The flammability limit of lean mixtures can be increased by using an active pre-chamber containing an injector and a spark plug, resulting in a combustion mode commonly called Turbulent Jet Ignition (TJI). The optimization of the combustion chamber shape and operating parameters for TJI combustion can be a demanding task, since the number of design parameters is significantly increased and is today supported by numerical simulations. In this paper, the process of the development of a numerical framework based on 3D CFD and 1D/0D numerical models that will support the research of the pre-chamber design and optimization of operating parameters will be shown. For 3D CFD modelling the AVL Fire™ code is employed, where the full combustion chamber model with intake and exhaust ports of the experimental engine is prepared.
X