Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Spacesuit Glove Manufacturing Enhancements Through the Use of Advanced Technologies

1993-07-01
932102
The success of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves. A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensional surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to existing styles, and in production, may reduce the cost of the gloves. Perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized.
Technical Paper

Enhanced Softgoods Structures for Spacesuit Micrometeriod/Debris Protective Systems

1992-07-01
921258
Based on recently revised space debris environment estimations for Low Earth Orbit (LEO) altitudes, the level of Micrometeoroid/Debris (M/D) protection afforded by the current Shuttle space suit layup may not be sufficient for application to the Space Station Freedom Program. Enhanced M/D protection could be incorporated through the use of a flexible multi-hull Thermal Micrometeoroid Garment (TMG) based on advanced fabric material layups. A lightweight, flexible TMG design for enhanced space suit M/D protection would potentially consist of an outer layer or “shield” comprised of Orthofabric, multi-layers of aluminized Mylar and a layer of silicone rubber loaded with micron sized particles of tungsten. The second layer or “backup sheet” would be comprised of a layer(s) of a fabric material such as Spectra (UHMWPE). The shield layers would fragment and/or vaporize the M/D projectile while the backup sheet would stop the resultant debris cloud.
Technical Paper

Recent Advances in the Development of Spacesuit Gloves

1996-07-01
961424
The continuous development of Extravehicular Activity (EVA) spacesuit gloves has lead to an effective solution for performing EVA to date. Some aspects of the current EVA gloves have been noted to affect crew performance in the form of limited dexterity and accelerated onset of fatigue from high torque mobility joints. This in conjunction with the fact that more frequent and complex EVAs will occur with the fabrication and occupation of Space Station Freedom, suggest the need for improved spacesuit gloves. Therefore, several efforts have been conducted in the recent past to enhance the performance of the spacesuit glove. The following is a description of the work performed in these programs and their impact on the design and performance of EVA equipment. In the late 1980's and early 1990's, a spacesuit glove design was developed that focused on building a more conformal glove with improved mobility joints that could function well at a higher operating pressure.
X