Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design of Roof-Rack Crossbars for Production Automobiles to Reduce Howl Noise using a Lattice Boltzmann Scheme

2007-05-15
2007-01-2398
A computational design study, performed in conjunction with experiments, to reduce the howl noise caused by the roof rack crossbars of a production automobile is presented. This goals were to obtain insight into the flow phenomenon causing the noise, and to do a design iteration study that would lead to a small number of cross-section recommendations for crossbars that would be tested in the wind tunnel. The flow condition for this study is 0 yaw at 30 mph inlet speed, which experimentally gives the strongest roof rack howl for the vehicle considered for this study. The numerical results have been obtained using the commercial CFD/CAA software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice Boltzmann Method (LBM), combined with a two-equation RNG turbulence model.
Technical Paper

Analysis of Underbody Windnoise Sources on a Production Vehicle using a Lattice Boltzmann Scheme

2007-05-15
2007-01-2400
A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
Technical Paper

Sunroof Buffeting of a Simplified Car Model: Simulations of the Acoustic and Flow-induced Responses

2005-05-16
2005-01-2498
Sunroof buffeting of a simplified car model was investigated experimentally and numerically in order to assess the potential of numerical methods to design sunroofs that are quiet and functional. The numerical results have been obtained using the commercially available software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice Boltzmann Method (LBM), combined with an RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of high Reynolds number flows over complex geometries, together with the acoustic response of resonant systems. In this work, a simplified car model with a sunroof was used for validation. A simulation methodology to determine the acoustic response of the passenger cabin was investigated and verified experimentally. The sunroof buffeting phenomenon was simulated over a range of flow conditions, and the results were found to be in good agreement with experimental data.
X