Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hybridization: Cost and Efficiency Comparisons for PEM Fuel Cell Vehicles

2000-08-21
2000-01-3078
This paper primarily compares costs and fuel economies of load following direct-hydrogen fuel cell vehicles with battery hybrid variations of the same vehicle. Additional information is included regarding load-following indirect methanol fuel cell vehicles. The key points addressed are as follows: the tradeoff between fuel cell system efficiency and regenerative braking ability; transient effects; and component cost differences. The difference in energy use and costs can vary significantly depending on the assumptions and the hybrid configurations. The mass of the battery pack creates the largest impact in energy use, while system efficiency losses roughly balance out with regenerative braking. For the direct-hydrogen fuel cell system, transient effects are small. These effects are expected to be significant for steam reformer/indirect-methanol systems (analyzed only graphically herein).
Technical Paper

Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency – Is Hybridization Necessary?

1999-03-01
1999-01-0530
The question of whether or not direct-hydrogen fuel cell systems in automotive applications should be used in load following or load leveled (battery hybrid) configurations is addressed. Both qualitative and quantitative analyses are performed to determine the potential strengths and weaknesses of each option. It is determined that the amount of energy that can be recovered through regenerative braking has a strong impact on the relative fuel economy of load following versus load leveled operation. Further, it is demonstrated that driving cycles with lower power requirements will show an improvement in vehicle fuel economy from hybridization while those with higher power requirements will not. Finally it is acknowledged that the practical considerations of cost and volume must also weigh heavily into the decision between the two configurations.
X