Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Discussion of the Air Bag System and Review of Induced Injuries

1996-02-01
960658
The air bag system is described in terms of four basic elements: the crash sensors and controls, the inflator, the air bag itself, and the diagnostic circuitry. A general discussion of these elements is provided and a review of air bag related injuries is also presented which includes data from various sources such as the University of Michigan Transportation Research Institute, National Highway Traffic and Safety Administration, Transport Canada, and the Insurance Institute for Highway Safety. The most frequently occurring accident type is the frontal collision and has been the main focus of safety efforts with regard to restraint systems. Air bags are an effective injur/prevention device, however their deployment can introduce new injury mechanisms. Air bags save lives and decrease the severity of major injuries in exchange for increasing the number of minor injuries.
Technical Paper

CHARACTERIZATION OF LEG INJURIES FROM MOTOR VEHICLE IMPACTS

2001-06-04
2001-06-0025
The objective of this investigation was to understand relationships among loading characteristics as they affect the kinematics and injury of a pedestrian’s lower extremity. Real-life pedestrian and motor vehicle collision scenarios were modeled by impacting 604 human cadaver intact legs and long bones with a cart/guide rail impacting system designed to simulate the front end of an automobile. A parametric study was conducted that varied the boundary conditions on the foot as well as test parameters such as loading direction, impact velocity, and impactor geometry. The series of tests can be categorized as follows: (1) Fracture Characterization, (2) Threshold Velocity, (3) Friction versus Inertial Constraint, (4) Anterior and Lateral Thigh Impacts, and (5) Embalmed vs. Unembalmed. Documented data for various specimens include, but are not limited to, specimen anthropometrics, fracture patterns, failure force levels, and calculated bending moments.
X