Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Technical Paper

Access Systems for Partial Gravity Exploration & Rescue: Engineering Analysis & Design

2006-07-17
2006-01-2291
Access systems for partial gravity planetary exploration are described that may allow humans in spacesuits safe access to scientifically significant terrain on the Moon and Mars. Contingency scenarios are presented for effective rescue of astronauts from flat and sloped terrain. Conclusions and recommendations are offered for Earth-based field testing and potential inclusion of access systems in the larger Lunar surface system architecture.
Technical Paper

Non-Contact Measurement Methods of Detecting Plant Water Deficit Stress for Space Flight Growth Chamber Application

2004-07-19
2004-01-2455
This study investigated the possibility of detecting water deficit stress in plants by using optical signals collected from leaves. Two theoretical approaches have been investigated. In principle, chlorophyll fluorescence can be used to measure generally stressful situations in plants. Our review, however, found that simple ratios of coarsely time-resolved chlorophyll fluorescence, such as maximum fluorescence over fluorescence at steady state, appear to be incapable of adequately distinguishing water stress from other stress factors. A second principle being investigated involves correlation of light absorption within leaves to leaf-water-content using water absorbing and non-water absorbing wavelengths. Our investigation concentrated on defining and eliminating as many extraneous variables as possible.
X