Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Novel Testing Protocol for Evaluating Particle Behavior in Fluid Flow Under Simulated Reduced Gravity Conditions

2009-07-12
2009-01-2359
A terrestrial analog device was developed to test the performance of a proposed lunar regolith-based water filtration design. To support this study, the flow behavior of tracer particles passing through a glass bead media filter was evaluated on NASA's reduced gravity aircraft in simulated microgravity and lunar gravity environments. The flight results were then compared to tests conducted using a novel application of a clinostat tilted ∼10 degrees from horizontal to simulate a lunar gravity vector fraction (1/6 of Earth's gravity, or 0.17g) acting axially on the fluid system. Phase I was designed to examine large particle fluidization and sedimentation characteristics, and showed that with relatively large particles, a sedimentation layer formed in the inclined clinostat similar to the true reduced gravity environment.
Technical Paper

Applications of Vestibular System Response to Mission Risk Mitigation Factors and Spacecraft Design Requirements

2003-07-07
2003-01-2535
Forty to seventy percent of astronauts and cosmonauts reportedly exhibit undesirable vestibular disturbances during the first few days of exposure to weightlessness, including Space Motion Sickness (SMS) and perceptual illusions. While SMS is the primary concern for short-duration missions, the effect of perceptual illusions during landing may be particularly problematic following long-duration missions such as returning from the International Space Station (ISS), or a Mars mission, where vestibular, perceptual and sensorimotor adaptation to 1g, to 0g, to 0.38g has occurred. The longer the mission, the more complete the adaptation is to hypogravity and the more severe the perceptual errors and sensorimotor control disturbances.
Technical Paper

Biological Wastewater Processor Experiment Definition

2000-07-10
2000-01-2468
The Biological Wastewater Processor Experiment Definition team is performing the preparatory ground research required to define and design a mature space flight experiment. One of the major outcomes from this work will be a unit-gravity prototype design of the infrastructure required to support scientific investigations related to microgravity wastewater bioprocessing. It is envisioned that this infrastructure will accommodate the testing of multiple bioprocessor design concepts in parallel as supplied by NASA, small business innovative research (SBIR), academia, and industry. In addition, a systematic design process to identify how and what to include in the space flight experiment was used.
X