Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

The Effect of Cooled Exhaust Gas Recirculation for a Naturally Aspirated Stationary Gas Engine

2016-11-08
2016-32-0093
Small natural gas cogeneration engines frequently operate with lean mixture and late ignition timing to comply with NOx emission standards. Late combustion phasing is the consequence, leading to significant losses in engine efficiency. When substituting a part of the excess air with exhaust gas, heat capacity increases, thus reducing NOx emissions. Combustion phasing can be advanced, resulting in a thermodynamically more favourable heat release without increasing NOx but improving engine efficiency. In this work, the effect of replacing a part of excess air with exhaust gas was investigated first in a constant volume combustion chamber. It enabled to analyse the influence of the exhaust gas under motionless initial conditions for several relative air-fuel ratios (λ = 1.3 to 1.7). Starting from the initial value of λ, the amount of CH4 was maintained constant as a part of the excess air was replaced by exhaust gas.
Technical Paper

Numerical Investigations of a Naturally Aspirated Cogeneration Engine Operating with Overexpanded Cycle and Optimised Intake System

2014-11-11
2014-32-0109
Electrical power and efficiency are decisive factors to minimise payoff time of cogeneration units and thus increase their profitability. In the case of (small-scale) cogeneration engines, low-NOx operation and high engine efficiency are frequently achieved through lean burn operation. Whereas higher diluted mixture enables future emission standards to be met, it reduces engine power. It further leads to poor combustion phasing, reducing engine efficiency. In this work, an engine concept that improves the trade-off between engine efficiency, NOx emissions and engine power, was investigated numerically. It combines individual measures such as lean burn operation, overexpanded cycle as well as a power- and efficiency-optimised intake system. Miller and Atkinson valve timings were examined using a detailed 1D model (AVL BOOST). Indicated specific fuel consumption (ISFC) was improved while maintaining effective compression ratio constant.
Technical Paper

Miller/Atkinson Valve Timing as Full Load Concept for a Naturally Aspirated Cogeneration Engine

2015-11-17
2015-32-0713
Lean burn operation allows small cogeneration engines to achieve both high efficiency and low NOx emissions. While further mixture dilution enables future emission standards to be met, it leads to retarded combustion phasing and losses in indicated engine efficiency. In the case of naturally aspirated engines, IMEP drops due to lower fuel fraction, increasing brake specific fuel consumption. In this work, an alternative engine configuration was investigated that improves the trade-off between engine efficiency, NOx emissions and IMEP. It combines well-established means such as Miller/Atkinson valve timing and optimised intake system for a single-cylinder cogeneration engine, operating with homogenous lean air-natural gas mixture. First, the engine configuration was analysed using a detailed 1D CFD model, implying a significant potential in reaching the project target.
Technical Paper

Numerical Investigations of the Auto-Ignition Ranges of a Natural Gas Fueled HCCI Engine

2017-11-05
2017-32-0073
Homogeneous charge compression ignition (HCCI) in natural gas fueled engines is thought to achieve high efficiency and low NOx emissions. While automotive applications require various load and speed regions, the operation range of stationary cogeneration engines is narrower. Hence, HCCI operation is easier to reach and more applicable to comply with future emission standards. This study presents computationally investigations of the auto-ignition ranges of a stationary natural gas HCCI engine. Starting from a detailed 1D engine cycle simulation model, a reduced engine model was developed and coupled to chemical kinetics using AVL Boost. Compression ratio, air-fuel ratio, internal EGR rate (iEGR) and intake temperature were varied for three different speeds, namely 1200, 1700 and 2200 rpm. Each examination includes a full factorial design study of 375 configurations. In the first step, the combustion was calculated using the GRI-mechanism 3.0 and a single zone combustion model.
X