Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

Analysis of a Diesel Spray Using a Mechanical Slicing Device

2001-05-07
2001-01-2009
This paper gives a summary of image velocimetry measurements performed in a sliced diesel spray. The slicing of the spray was necessary to achieve sufficient image quality in the more dense regions of the spray. The images were double exposed to allow auto-correlation based velocimetry. The illumination was achieved with a xenon flashlight behind the spray and consequently the droplets were visible as dark shadows. Images were acquired from different points downstream from the nozzle, and a number of different radii were employed at every position. In the images the smaller droplets seem to be spherical, while the larger ones are distorted due to high weber numbers. Computer simulations indicate that large droplets may reach high weber numbers when passing through the slit, and that some of these large droplets break up.
X