Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Response and Vulnerability of the Upper Arm Through Side Air Bag Deployment

1997-11-12
973323
The number of passenger cars equipped with side air bags is steadily increasing. With the aim of investigating the mechanical responses and the injuries of the arm under the influence of a side air bag, tests in probably higher injury risk configurations with dummies and cadavers were performed. The air bag was installed at the outer side of the seat back, with the subject seated in the driver or front passenger seat of a passenger car. During the inflation of the air bag, the left or right forearm of the subject was positioned on the arm rest while the upper arm made contact with the seat back edge. The volume of the thorax air bag was 15 litres and for the thorax-head air bag 28 litres. The dummy was instrumented at the thorax c.g. shoulder, elbow and wrist with triaxial accelerometers. In the cadaver, triaxial accelerations in three orthogonal directions were measured at the upper and the lower humerus, the upper radius and the lower radius and the first thoracic vertebrae.
Technical Paper

The Performance of Active and Passive Driver Restraint Systems in Simulated Frontal Collisions

1994-11-01
942216
The study reports on the results of frontal collisions with 16 cadavers and two Hybrid III dummies with impact velocities of 48 km/h to 55 km/h and a mean sled deceleration of 17 g; mounted to the sled was the front part of a passenger compartment. The cadavers were restrained in the driver position with either 3-point belts (6% and 16 % elongation) and/or air bag with knee bolster and one case was unrestrained. In most cases, both a 12-accelerometer thoracic array and 2 chest bands were employed. In some cases the acceleration at Th6 was measured. The cadavers were autopsied and the injury severity was rated according to the AIS 90. Maximum resultant Th1, Th6, and Th12 accelerations or sternum accelerations in x-direction ranged from 35g to 78g when using 3-point belts and produced injuries ranging from a few rib fractures to unstable chest wall (flail chest).
Technical Paper

On the Synergism of the Driver Air Bag and the 3-Point Belt in Frontal Collisions

1995-11-01
952700
The number of passenger vehicles with combined 3-point belt/driver air bag restraint systems is steadily increasing. To investigate the effectiveness of this restraint combination, 48 kph frontal collisions were performed with human cadavers. Each cadaver's thorax was instrumented with a 12-accelerometer array and two chest bands. The results show, that by using a combined standard 3-point belt (6% elongation)/driver air bag, the thoracic injury pattern remained located under the shoulder belt. The same observation was found when belts with 16% elongation were used in combination with the driver air bag. Chest contours derived from the chest bands showed high local compression and deformation of the chest along the shoulder belt path, and suggest the mechanism for the thoracic injuries.
Technical Paper

Comparison Between Frontal Impact Tests with Cadavers and Dummies in a Simulated True Car Restrained Environment

1982-02-01
821170
A test series of 12 fresh cadavers and 5 Part 572 dummies is reported. The test configuration is frontal impact sled simulation at 30 mph and aims to simulate the restraint environment of a Volvo 240 car. The test occupants are restrained in a 3-point safety belt. The instrumentation of the surrogates involves mainly 12-accelerometers in chest, 9-accelerometers in head and 3-accelerometers in pelvis. Measured values are given and discussed together with the medical findings from the cadaver tests. The occurence of submarining with cadavers and dummies is reported. A comparison is also made with earlier work where both field accidents and sled simulatations of similar violence have been reported. It is concluded that there exist differences in kinematics between the dummy and the cadaver, although peak chest acceleration is similar in both conditions. The lap belt slides over the iliac crest more frequently in the cadaver tests than in the dummy tests.
Technical Paper

New Aspects of Pedestrian Protection Loading and Injury Pattern in Simulated Pedestrian Accidents

1988-10-01
881725
The paper presents a report about car pedestrian impact simulations. The front of a production car, which was mounted on a platform moving on rails was used as impact vehicle. The test subjects were eleven unembalmed post mortem human subjects (PMHS) in the age range of 19 to 78 years, and the Hybrid II-P dummy. The test speeds ranged from 23 to 41 km/h. Accelerations of head, thorax and abdomen were measured on the test subject as well as at the inside of both the knee and the ankle of the impacted leg. High speed films were taken from the side view. In eight cases we noticed open tibia and fibula fractures of the impacted leg; usually associated with higher impact velocity or the age of the test subject; in one additional case a scapular fracture occurred at a collision velocity of 41 km/h. In 6 cases we observed vertebral column injuries of AIS 1, in two cases of AIS 2, and in one case of AIS 3. In no case did pelvic-, thoracic (skeletal) and skull fractures occur.
Technical Paper

Neck Response and Injury Assessment Using Cadavers and the US-SID for Far-Side Lateral Impacts of Rear Seat Occupants with Inboard-Anchored Shoulder Belts

1990-10-01
902313
This paper documents seven car/car lateral collisions with belted farside rear seat occupants. The test subjects - cadavers and US SIDs - were restrained with a 3-point belt which had an inboard upper anchoring point for the shoulder belt. The collision velocity was 50 km/h. In the cadaver tests, the maximum resultant acceleration, an average of 18 G, was located at the clivus. In the US SID a maximum of 22 G occurred at the C.G. Average shoulder belt forces in the cadavers of 1,6 KN were measured compared to 2,5 KN in the US SID. Through an analysis of the high speed films, lateral head-neck bending angles of 40 to 65 degrees for the cadavers were investigated. The calculated angular velocities were between 13 and 38 rad/s and angular accelerations between 350 and 644 rad/s2. No head, thorax or pelvic injuries were observed. Belt-induced minor injuries at the skin on the neck, neck muscles and cervical spine were observed with a MAIS 1.
X