Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Technical Paper

Multi-Functional Reactor for Emission Reduction of Future Diesel Engine Exhaust

2009-04-20
2009-01-0287
Future diesel emission control systems have to effectively operate under non-conventional low-temperature combustion engine operating conditions. In this work the research and development efforts for the realization of a Multi-Functional catalyst Reactor (MFR) for the exhaust of the upcoming diesel engines is presented. This work is based on recent advances in catalytic nano-structured materials synthesis and coating techniques. Different catalytic functionalities have been carefully distributed in the filter substrate microstructure for maximizing the direct and indirect (NO2-assisted) soot oxidation rate, the HC and CO conversion efficiency as well as the filtration efficiency. Moreover, a novel filter design has been applied to enable internal heat recovery capability by the implementation of heat exchange between the outlet and the inlet to the filter flow paths.
X