Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Technical Paper

Accuracy Limits of IMEP Determination from Crankshaft Speed Mesurements

2002-03-04
2002-01-0331
The paper presents a method of determining the Indicated Mean Effective Pressure (IMEP) and the gas pressure torque of a multi-cylinder engine using data obtained from the measurement of the crankshaft's speed variation. At steady state operating conditions a Fourier series describe the gas pressure torque of a cylinder and the resultant torque may be obtained by adding the harmonic components corresponding to all cylinders. Only the major harmonic orders, having the same phase for all cylinders add algebraically appearing with large contributions in the spectrum of the resultant torque. The lowest major component has a low frequency and, at this frequency, the crankshaft behaves dynamically like a rigid body. In this situation it is possible to correlate the amplitude of this harmonic order of the gas pressure torque to the same harmonic order of the crankshaft speed.
Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

Estimation of the Mean Indicated Pressure from Measurements of the Crankshafts Angular Speed Variation

1993-09-01
932413
In recent years much interest has been shown for the possibilities to determine, on-line, the torque or power delivered by an i.c. engine running on site under normal operating conditions. In this paper, a method is developed which permits to estimate the average value, for the whole engine, of the mean indicated pressure (MIP), based on measurements of the angular speed fluctuations of the crankshaft. In order to establish the correlation between the MIP and some characteristic magnitudes of the angular speed fluctuations, three different ways to solve the system of differential equations of motion for the torsional oscillating system of the shafting are presented and discussed: transfer matrices (TM), direct numerical integration (DI) and modal analysis (MA). A comparison with experiment shows acceptable coincidence between measurements and simulation for all three methods.
Technical Paper

Experimental Determination of the Instantaneous Frictional Torque in Multicylinder Engines

1996-10-01
962006
An experimental method for determining the Instantaneous Frictional Torque (IFT) using pressure transducers on every cylinder and speed measurements at both ends of the crankshaft is presented. The speed variation measured at one end of the crankshaft is distorted by torsional vibrations making it difficult to establish a simple and direct correlation between the acting torque and measured speed. Using a lumped mass model of the crankshaft and modal analysis techniques, the contributions of the different natural modes to the motion along the crankshaft axis are determined. Based on this model a method was devised to combine speed measurements made at both ends of the crankshaft in such a way as to eliminate the influence of torsional vibrations and obtain the equivalent rigid body motion of the crankshaft. This motion, the loading torque and the gas pressure torque are utilized to determine the IFT.
Technical Paper

A Faster Algorithm for the Calculation of the IMEP

2000-10-16
2000-01-2916
The Indicated Mean Effective Pressure (IMEP) is a very important engine parameter, giving significant information about the quality of the cycle that transforms heat into mechanical work. For this reason, modern data acquisition systems display, on line, the cylinder pressure variation together with the corresponding IMEP. The paper presents a very simple algorithm for the calculation of IMEP, based on the correlation between IMEP and the gas pressure torque. It was found that that the IMEP may be calculated by a very simple formula involving only two harmonic components of the cylinder pressure variation. The computation of the two harmonic components is very easily performed because it does not involve the calculation of an average pressure and the cylinder volume variation. The method was experimentally validated showing differences less than 0.2% with respect to the IMEP calculated by the traditional method.
X