Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effects of Pilot Injection Parameters on Combustion for Common Rail Diesel Engines

2003-03-03
2003-01-0700
The aim of the present work is to evaluate the influence of the pilot injection on combustion of a TDI Diesel engine for different engine torque and speed conditions. For this investigation, pilot injection timing and duration were varied on a wide range of values, and their effects on combustion pressure, rate of heat release, pilot and main combustion delay, combustion process and exhaust emissions in terms of NOx and smoke were analyzed. An in-line, four-cylinder, turbocharged FIAT 1930 cm3 TDI Diesel engine, equipped with Common Rail injection system, was tested. A piezoelectric sensor was located in the combustion chamber in order to acquire combustion pressure; from these signals, gross heat release rate was derived in order to analyze the combustion behavior. Pollutant emission levels have been measured by means of a gas analyzer, while for smoke an opacimeter was used.
Technical Paper

Optimization of the Combustion Chamber of Direct Injection Diesel Engines

2003-03-03
2003-01-1064
The optimization procedure adopted in the present investigation is based on Genetic Algorithms (GA) and allows different fitness functions to be simultaneously maximized. The parameters to be optimized are related to the geometric features of the combustion chamber, which ranges of variation are very wide. For all the investigated configurations, bowl volume and squish-to-bowl volume ratio were kept constant so that the compression ratio was the same for all investigated chambers. This condition assures that changes in the emissions were caused by geometric variations only. The spray injection angle was also considered as a variable parameter. The optimization was simultaneously performed for different engine operating conditions, i.e. load and speed, and the corresponding fitness values were weighted according to their occurrence in the European Driving Test.
Technical Paper

Effect of the Shape of the Combustion Chamber on Dual Fuel Combustion

2013-09-08
2013-24-0115
The effect of the shape of the bowl on the combustion process and emissions of a Natural Gas - Diesel dual fuel engine is analyzed. The simulation of the dual fuel combustion is performed with a modified version of the KIVA3V code where diesel is treated as the main fuel and a further reacting specie is introduced as methane (CH4). The auto-ignition of the pilot is simulated with a modified version of the Shell model and the first stage of the combustion, related to the pilot burning process, is simulated with the Characteristic Time Combustion model. When the temperature of the mixture reaches a certain threshold, a kernel of combustion is initialized. Until the kernel reaches a nominal radius the combustion of CH4 is prevented. The combustion of CH4 is simulated with a turbulent characteristic time too. Numerical models were chosen as a compromise between accuracy and computational time.
Technical Paper

Experimental Analysis of Common Rail Pressure Wave Effect on Engine Emissions

2005-04-11
2005-01-0373
In the present study, the influence of pressure waves propagating in the ducts of common rail injection systems on engine out emission has been investigated. The pressure waves originated by the closure of the injectors are characterized by an amplitude that can easily be greater than 10 MPa. When a multi injection strategy is adopted such fluctuations can strongly affect fuel delivery rate of subsequent injections and therefore emission levels and fuel consumption. The paper reports the results of an experimental investigation that has been carried out on a single cylinder engine equipped with a common rail electronically controlled high pressure injection system and an optical access, via endoscopes, for the visualization of soot and combustion process. The used injection strategy consisted of pilot and main injection. To allow the start of the main injection on a local pressure peak or valley without changing injection timing, injection system ducts of different length were used.
Technical Paper

Two-Stroke Ported Engine with Scavenging Pump: Prototype and Results

1991-11-01
911287
A mono-cylinder engine was built, because of its costs and the semplicity of designing, as flexible prototype. A scavenging system with four ports, two by two simmetrical, was chosen to respect the modern theory of scavenging optimization. The scavenging flow was supplied by a carter-pump; it has been used as first experimental solution. The prototype has been entirely realised and the following experimental measurements have been carried out: the pressure in combustion chamber, in carter pump, in pipes and injection system, as well as the fundamental parameters of engine functioning.
X