Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Finite Element Model of the EUROSID Dummy

1992-11-01
922528
In occupant safety simulations it is desirable to extend existing rigid body occupant models towards deformable Finite Element models. Thereby a wider range of occupant / structure interactions can be covered and a better accuracy can be achieved. This paper describes some aspects of the FE modelling of the EUROSID thorax for use in an explicit Finite Element code. First a single rib model is evaluated, then a full thorax is generated and inserted into a rigid body Dummy model. Experimental results from impactor tests serve as a basis for the validation of the model.
Technical Paper

Comparison of Hybrid III and Human Cadaver Thorax Deformations Loaded by a Thoracic Belt

1994-11-01
942209
Injuries to the thorax in frontal impact accidents remain an important problem even for restrained occupants. During a frontal accident a significant portion of the forces restraining the occupant pass through the thoracic belt and deform the chest with the possibility of serious thoracic injuries. It is therefore important to understand the deformation of the human thorax when loaded by a thoracic belt and to understand how accurately crash dummies used in standard tests reproduce these deformations. This paper describes results of 19 tests in which a diagonal shoulder belt dynamically loaded the thorax of unembalmed cadavers and dummies (1). In all the tests, thoracic external deformations were measured using string potentiometers and two External Peripheral Instrument for Deformation Measurement (EPIDM) transducers (2).
Technical Paper

A Numerical Model of the Human Ankle/Foot under Impact Loading in Inversion and Eversion

1996-11-01
962428
Since numerous years, the vehicle industry is interested in occupant safety. The dummy use in crash tests allowed to create protective means like the belt and the airbag that diminished the injuries of the head and the thorax, which are often lethal for the car occupant. An other objective appears now: to improve the car safety to avoid the injuries which are not fatal but which can cause disability and which cause great cost in hospitalization and rehabilitation. The lower extremity protection, in particular the one of the ankle and the foot region, has become the subject of diverse research efforts by its high percentage of injuries in car crashes. But the dummy mechanics cannot reproduce the accurate ankle and the foot kinematics during an impact loading like in vehicle crash. Therefore, ankle/foot complex numerical models are an essential tool for the car safety improvement.
Technical Paper

Evaluation of Pelvic Fracture Tolerance in Side Impact

1980-09-01
801306
Pelvic fracture is a typical lesion sustained by the occupant of a vehicle involved in a lateral impact collision who is seated on the impact side. If this fracture is generally not severe by itself, it is nevertheless often associated with severe abdominal lesions. Study of injury mechanisms in lateral impact collisions shows that there are two ways of ensuring a better protection of the occupant in this type of accident: first by preventing intrusion so that the contact velocity “occupant/inner door” is decreased, secondly by absorbing the shock of the occupant against the inner door, especially at pelvis and thorax levels. It is necessary to have a good knowledge of human tolerance to fracture of the considered body segment in order to determine the mechanical properties of the padding material. The aim of this study is to determine the tolerance of the human pelvis.
X