Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Engine Oil Formulation Variables on Exhaust Emissions in Taxi Fleet Service

2002-10-21
2002-01-2680
The relationship between engine oil formulations and catalyst performance was investigated by comparatively testing five engine oils. In addition to one baseline production oil with a calcium plus magnesium detergent system, the remaining four oils were specifically formulated with different additive combinations including: one worst case with no detergent and production level zinc dialkyldithiophosphate (ZDTP), one with calcium-only detergent and two best cases with zero phosphorus. Emissions performance, phosphorus loss from the engine oil, phosphorus-capture on the catalyst and engine wear were evaluated after accumulating 100,000 miles of taxi service in twenty vehicles. The intent of this comparative study was to identify relative trends.
Technical Paper

The Impact of Passenger Car Motor Oil Phosphorus Levels on Automotive Emissions Control Systems

1996-10-01
961898
A 100,000-mile fleet test in nine gasoline-powered passenger cars was carried out. The impact of motor oil phosphorus levels on engine durability, oil degradation, and exhaust emissions has been previously described. The results of additional emissions control systems studies, and measurements of the engine oil additive elements which are present on the catalysts, are now presented. These studies include conversion efficiencies for the aged catalyst at the end of the test by a combination of light-off experiments, air/fuel sweep tests, and an auto-driver FTP. The performance of the lambda sensors is also presented. The relationships between engine oil additive levels and composition and emissions systems durability is presented.
Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

1999-03-01
1999-01-0271
The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
X