Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Validation of ADVISOR as a Simulation Tool for a Series Hybrid Electric Vehicle

1998-02-23
981133
One of the most widely used computer simulation tools for hybrid electric vehicles (HEVs) is the ADvanced VehIcle SimulatOR (ADVISOR) developed by the National Renewable Energy Laboratory. The capability to quickly perform parametric and sensitivity studies for specific vehicles is a unique and invaluable feature of ADVISOR. However, no simulation tool is complete without being validated against measured vehicle data to insure the reliability of its predictions. This paper details the validation of ADVISOR using data from the Virginia Tech FutureCar Challenge Lumina, a series HEV. The modeling process is discussed in detail for each of the major components of the hybrid system: transmission; electric motor and inverter; auxiliary power unit (fuel and emissions); batteries; and miscellaneous vehicle parameters. The integration of these components into the overall ADVISOR model is also described. The results of the ADVISOR simulations are then explained.
Technical Paper

Systems Integration and Performance Issues in a Fuel Cell Hybrid Electric Vehicle

2000-03-06
2000-01-0376
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) has integrated a proton exchange membrane fuel cell as the auxiliary power unit of a series hybrid design to produce a highly efficient zero-emission vehicle. A 1997 Chevrolet Lumina sedan, renamed ANIMUL H2, carries this advanced powertrain, using an efficient AC induction drivetrain, regenerative braking, compressed hydrogen fuel storage, and an advance lead-acid battery pack for peak power load leveling. The fuel cell supplies the average power demand and to sustain the battery pack state-of-charge within a 40-80% window. To optimize system efficiency, a load-following strategy controls the fuel cell power level. The vehicle weighed 2000kg (4400lb) and achieved a combined city/highway fuel economy of 9L/100 km or 26 mpgge (miles per gallon gasoline equivalent).
Technical Paper

Integration of Fuel Cell Technology into a Hybrid Electric Vehicle

2000-03-06
2000-01-0592
The Virginia Tech Hybrid Electric Vehicle Team (HEVT) has integrated a proton exchange membrane (PEM) fuel cell as the auxiliary power unit (APU) of a series hybrid design to produce a highly efficient zero-emission vehicle (ZEV). This design is implemented in a 1997 Chevrolet Lumina sedan, renamed ANIMUL H2, using an efficient AC induction drivetrain, regenerative braking, compressed hydrogen fuel storage, and an advance lead-acid battery pack for peak power load leveling. The fuel cell is sized to supply the average power demand and to sustain the battery pack state-of-charge (SOC) within a 40-80% window. To optimize system efficiency, the fuel cell is driven with a load-following control strategy. The vehicle is predicted to achieve a combined city/highway fuel economy of 4.3 L/100 km or 51 mpgge (miles per gallon gasoline equivalent).
X