Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Vehicle System Design Process for a Series-Parallel Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1774
The Hybrid Electric Vehicle Team of Virginia Tech is one of 15 schools across the United States and Canada currently competing in EcoCAR 2: Plugging In to the Future. EcoCAR 2 is a three year competition that mimics GM's Vehicle Development Process (VDP): design, build, then refine. The first step in the design process is the selection of a powertrain architecture. In the architecture selection process, HEVT considered three options: a Battery Electric Vehicle (BEV), a Series Plug-in Hybrid Electric Vehicle (PHEV), and a Series-Parallel PHEV. The team chose the Series-Parallel PHEV based on powertrain modeling and simulation and CAD packaging analysis. Next, the team looked at a variety of component combinations and selected the one that offered the best capacity to meet competition and team goals. These components are then packaged in the CAD model to plan for component integration. As this integration was happening, a control system was also being developed.
Technical Paper

An Extended-Range Electric Vehicle Control Strategy for Reducing Petroleum Energy Use and Well-to-Wheel Greenhouse Gas Emissions

2011-04-12
2011-01-0915
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2008 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Laboratory (ANL) and sponsored by General Motors (GM) and the U.S. Department of Energy (DoE). Following GM's vehicle development process, HEVT established goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in, range-extended hybrid electric vehicle. The challenge involves designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use and well-to-wheels (WTW) greenhouse gas (GHG) emissions. In order to interface with and control the vehicle, the team added a National Instruments (NI) CompactRIO (cRIO) to act as a hybrid vehicle supervisory controller (HVSC).
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Design and Development Process for the Equinox REVLSE E85 Hybrid Electric Vehicle

2006-04-03
2006-01-0514
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2005 - 2007 Challenge X advanced technology vehicle competition series, sponsored by General Motors Corporation, the U.S. Department of Energy, and Argonne National Lab. This report documents the Equinox REVLSE (Renewable Energy Vehicle, the Larsen Special Edition) design and how it meets the Challenge X goals. The design process, Vehicle Technical Specifications (VTS), system components, control strategy, model validation, vehicle balance, and the Challenge X Vehicle Development Process (XVDP) are defined and explained. The selected Split Parallel Architecture (SPA) E85-fueled hybrid vehicle powertrain design can meet the performance, emissions and fuel economy goals of Challenge X, while reducing petroleum use by 80 %.
X