Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Application of CAE Based Robustness Methodology to Vehicle High Mileage NVH Degradation

1996-02-01
960733
High mileage NVH performance is one of the major concerns in vehicle design for long term customer satisfaction. Elastomeric components such as suspension bushings function as vibration isolators in a vehicle. High mileage driving tends to cause the degradation of these components which in turn results in the degradation of vehicle overall NVH performance. The present paper presents the application of CAE based robustness methodology to vehicle high mileage degradation with respect to bushing degradation. A unitized vehicle with suspension strut mounts is selected as the project vehicle. Strut mount degradation characteristics, vehicle CAE model and design of experiment are linked together to achieve vehicle response robustness. The concept and methodology arc demonstrated using a tire input which simulates road excitations as a first step toward the development of a more extensive robustness methodology which will cover other excitation conditions.
Technical Paper

The Effects of Bushing Degradation on Vehicle High Mileage NVH Performance

1996-02-01
960732
High mileage NVH performance is one of the major concerns in vehicle design for long term customer satisfaction. Elastomeric components such as suspension bushings, engine mounts and tires function as vibration isolators in a vehicle. High mileage tends to cause the degradation of these components which in turn affects vehicle overall NVH performance. The present paper discusses the characteristics of bushing degradation based on laboratory bushing test data. Vehicle subjective evaluation and CAE modeling methods are used to develop a fundamental understanding of the effects of bushing degradation on vehicle NVH performance. The concept and analysis methodology are demonstrated using the front and rear suspension strut mounts and tire inputs which simulate road excitations but they are valid for other elastomeric components such as engine mounts and excitations. The knowledge derived in the study can be used as a generic guideline in designing vehicles for high mileage NVH robustness.
Technical Paper

Testing and Characterization of Elastomeric Bushings for Large Deflection Behavior

1997-02-24
970099
Elastomeric components are used extensively in the construction of the modern automobile to accommodate relative movement between metal parts, absorb shocks and to provide isolation from undesirable vibrations. Their small-amplitude dynamic stiffness and damping characteristics are the key mechanical properties most influencing vehicle NVH performance. Their large-amplitude static force-deflection characteristics are crucial for vehicle ride and handling performance. On the other hand, when a vehicle is driven on a rough road durability course at a proving ground, all elastomeric components experience large-amplitude dynamic loads. The durability loads transferred through each elastomeric component highly depend on the stiffness and damping characteristics of these components.
X