Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Reliability and Quality of Body Concept CAE Models for Design Direction Studies

2006-04-03
2006-01-1617
There are two distinct classes of body CAE models (detailed and concept models) that can be used to support vehicle body design and development. A detailed finite element model achieves computational accuracy by precisely simulating component geometries and assembly interfaces. On the other hand, a concept model simulates stiffness behavior of joints and major load-carrying members (e.g., pillars, rails, rockers, etc.) in a body structure. The former is quite useful for conducting trade-off studies when detailed design drawings become available. The latter is valuable for up-front design direction studies prior to detailed design evolution. In concept models, major load-carrying members are universally represented by cross sectional properties (e.g., area, moments of inertia and torsion constant). The key difference between various kinds of concept models is the representation of body joints.
Technical Paper

CAE Process for Global Durability Analysis in Support of Up-Front Design

1995-02-01
950576
Traditionally, vehicle durability cracks have been treated to be local problems as a result of poor designs of notches, welds, holes, corners or reinforcements. The problems were usually found and fixed at a late design stage which often resulted in weight and cost penalties for a vehicle program. However, in many instances, the local problems mentioned above are simply the consequence of a poor global design. The global problems can generally be grouped into three categories: stress induced fatigue problems due to excessive global stresses as a result of body structural discontinuities, load induced fatigue problems due to excessive loads input to a body as a result of suspension designs, and vibration induced fatigue problems due to unfavorable structural resonance. The current paper presents a CAE analysis process which can be used at the upfront design stage to assess vehicle durability performances from a global design point of view.
Technical Paper

The Effects of Bushing Degradation on Vehicle High Mileage NVH Performance

1996-02-01
960732
High mileage NVH performance is one of the major concerns in vehicle design for long term customer satisfaction. Elastomeric components such as suspension bushings, engine mounts and tires function as vibration isolators in a vehicle. High mileage tends to cause the degradation of these components which in turn affects vehicle overall NVH performance. The present paper discusses the characteristics of bushing degradation based on laboratory bushing test data. Vehicle subjective evaluation and CAE modeling methods are used to develop a fundamental understanding of the effects of bushing degradation on vehicle NVH performance. The concept and analysis methodology are demonstrated using the front and rear suspension strut mounts and tire inputs which simulate road excitations but they are valid for other elastomeric components such as engine mounts and excitations. The knowledge derived in the study can be used as a generic guideline in designing vehicles for high mileage NVH robustness.
Technical Paper

A New Tire Model for Vehicle NVH Analysis

1987-02-01
870424
Since road roughness is an important source of vehicle vibration, a system model for NVH analysis requires a tire model which accurately predicts spindle response to road input. Most tire models currently used in the auto industry do not meet this requirement, because they are based on static stiffness of the tire and do not produce realistic response to input at the patch. This paper investigates a new modal tire model with patch input capability as a component within a vehicle system model. Comparisons are also presented between the behavior of the new tire model and a conventional spring model. To validate the performance of the tire model for NVH analysis, simulated vehicle responses to bump input are compared to chassis roll test results. Good correlation between the model prediction and the chassis roll measurements is observed.
X