Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Advantages and Challenges for Low Viscosity Oils in Emergent Countries

2017-11-07
2017-36-0387
Low viscosity combined with appropriated additive technology is one of the main paths to reduce friction on Internal Combustion Engines. Japan is on the cutting edge of low viscosity oils, having already available SAE 0W-8 in the market. On the other hands, in emergent countries like Brazil, SAE 15W-40 is still used in some passenger cars while the Japanese origin car brands use SAE 0W-20. Lubricant friction additives type also differs depending on the original equipment manufacturer (OEM) origin, and the Japanese ones usually containing high amounts of the Molybdenum type. In this paper, some of the advantages and challenges of using low viscosity oils are discussed and emphasis is given in the friction reduction obtained with the synergic effects of the right choice of additives components type and the material/coating used in the engine parts. Ring-liner rig and floating liner engine tests comparing different oils will be presented.
Technical Paper

Effect of Lubricant Viscosity and Friction Modifier on Reciprocating Tests

2013-10-07
2013-36-0155
Five automotive oils, with different viscosity grades, were tested under different loads and speeds in a reciprocating test using piston rings and cylinder liners. Starved and fully-flooded conditions were also considered in order to analyze the influence of lubricant supplier in the lubrication regimes, especially in boundary-mixed transition. The expected Stribeck curve behavior was observed, and more interesting visualization appeared when the viscosity value was extracted from the Stribeck abscissa axis. The higher viscosity oils showed lower friction coefficient at low speed/load ratios. Such behavior is usually neglected and may be significant to understand the triblogical behaviour of engineering components. Computer simulation showed similar results, including the “cross-over” speed/load when the lower viscosity oils start to show lower friction.
Technical Paper

Modelling of the Asperity Contact Area on Actual 3D Surfaces

2005-04-11
2005-01-1864
The Greenwood model has been extensively used for calculation of the asperity pressures under mixed lubrication conditions, but usually assuming that the surfaces are gaussian. In this work, the Greenwood parameters are calculated from actual, non-gaussian, engine surfaces measured by White Light Interferometer. Results from 2D profiles and 3D measurements are compared. An improved way to calculate the Greenwood parameters and to apply them for estimation of the contact area and pressure is described. To illustrate the methodology, some examples of topography characterization and modeling for engine liners are presented. The influence of the asperity summit height average on the predicted contact area calculation is discussed. To explore and validate the proposed method, several WLI measurements from different engine HDD liners were analyzed using a proprietary code.
X