Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Powertrain Friction Reduction by Synergistic Optimization of the Cylinder Bore Surface and Lubricant Part 1: Basic Modelling

2021-09-21
2021-01-1214
The piston assembly is the major source of tribological inefficiencies among the engine components and is responsible for about 50% of the total engine friction losses, making such a system the main target element for developing low-friction technologies. Being a reciprocating system, the piston assembly can operate in boundary, mixed and hydrodynamic lubrication regimes. Computer simulations were used to investigate the synergistic effect between low viscosity oils and cylinder bore finishes on friction reduction of passenger car internal combustion engines. First, the Reynolds equation and the Greenwood & Tripp model were used to investigating the hydrodynamic and asperity contact pressures in the top piston ring. The classical Reynolds works well for barrel-shaped profiles and relatively thick oil film thickness but has limitations for predicting the lubrication behavior of flat parallel surfaces, such as those of Oil Control Ring (OCR) outer lands.
Technical Paper

Powertrain Friction Reduction by Synergistic Optimization of Cylinder Bore Surface and Lubricant - Part 2: Engine Tribology Simulations and Tests

2021-09-21
2021-01-1217
In the present work, a system approach to the tribological optimization of passenger car engines is demonstrated. Experimental data and simulation results are presented to demonstrate the role of surface specifications, ring pack, and lubricant on the piston/bore tribology. The importance of in-design “pairing” of low-viscosity motor oils with the ring pack and the cylinder bore characteristics in order to achieve maximum reduction in GHG emissions and improvement in fuel economy without sacrificing the endurance is elucidated. Earlier motored friction data for two different gasoline engines - Ford Duratec and Mercedes Benz M133 - using motor oils of different viscosity grades are now rationalized using AVL EXCITE® piston/bore tribology simulations. The main difference between the engines was the cylinder bore surface: honed cast iron vs thermally sprayed, and the valve train type: direct-acting mechanical bucket (DAMB) vs roller finger follower (RFF).
Technical Paper

Optimizing the Piston/Bore Tribology: The Role of Surface Specifications, Ring Pack, and Lubricant

2020-09-15
2020-01-2167
The present study looks into different possibilities for tribological optimization of the piston/bore system in heavy duty diesel engines. Both component rig tests and numerical simulations are used to understand the roles of surface specifications, ring pack, and lubricant in the piston/bore tribology. Run-in dynamics, friction, wear and combustion chamber sealing are considered. The performance of cylinder liners produced using a conventional plateau honing technology and a novel mechanochemical surface finishing process - ANS Triboconditioning® - is compared and the importance of in-design “pairing” of low-viscosity motor oils with the ring pack and the cylinder bore characteristics in order to achieve maximum improvement in fuel economy without sacrificing the endurance highlighted. A special emphasis is made on studying morphological changes in the cylinder bore surface during the honing, run-in and Triboconditioning® processes.
Technical Paper

An Improved Surface Characterization of Textured Surfaces on Mixed Lubrication Regimes

2010-05-05
2010-01-1525
Numerical characterization of surfaces with deep dimples, e.g. Laser Textured Surfaces, poses questions relative to the standard filtering techniques used to separate roughness, waviness and form effects. Usual roughness filters would produce a reference plane several micrometers “below” the surface. If this surface plane will be used as reference for mixed lubrication modeling, no hydro dynamic pressures and excessive high contact pressures may be calculated. The conventional roughness filters, Gaussian and Rk, and 4 other filters were applied in an artificially dimpled surface in order to demonstrate and especially to discuss how the Greenwood contact parameters were affected. Depending on the filter used, the estimation of the minimum surface separation for asperity contact varied two magnitude orders.
Technical Paper

Piston Ring Pack and Cylinder Wear Modelling

2001-03-05
2001-01-0572
Wear of piston ring and cylinder was modelled through a computer code that calculates the hydrodynamic and roughness contact pressures acting on the contact surfaces. Both pressures are fully and coupled solved through, respectively, Reynolds equation and Greenwood-Williamson model. Piston secondary motion and piston groove thermal deformations are considered. The latter was discovered to be fundamental in defining the top ring worn profile. Due to the rough contact pressures, the model predicts material removal from both piston ring and cylinder surfaces and recalculates the system, hence simulating the evolution of the worn sliding surface of both parts. The predicted wear of the piston ring pack and the cylinder wall are compared with a medium duty diesel engine tested for 750 hours in dynamometer.
Technical Paper

Abnormal Wear on Piston Top Groove

2003-03-03
2003-01-1102
With the increase of thermal and mechanical loads, some spark ignition (SI) engines may present excessive wear on the piston top groove. The problem was studied first by numerical simulation. Several parameters were found to influence the groove wear. E.g., ring side face roughness and hardness. But the main influence found was the relative attitude between groove flank and ring side face. As the instantaneous attitude varies during the engine cycle, the problem was studied with a commercial ring dynamics computer program and considering thermal and mechanical deformations that occur in the piston during engine operation. The expected groove wear was estimated by the accumulated “wear load” during critical engine operation regimes. Experimental results of engines with groove wear solved by design optimization are shown.
Technical Paper

Effect of Lubricant Viscosity and Friction Modifier on Reciprocating Tests

2013-10-07
2013-36-0155
Five automotive oils, with different viscosity grades, were tested under different loads and speeds in a reciprocating test using piston rings and cylinder liners. Starved and fully-flooded conditions were also considered in order to analyze the influence of lubricant supplier in the lubrication regimes, especially in boundary-mixed transition. The expected Stribeck curve behavior was observed, and more interesting visualization appeared when the viscosity value was extracted from the Stribeck abscissa axis. The higher viscosity oils showed lower friction coefficient at low speed/load ratios. Such behavior is usually neglected and may be significant to understand the triblogical behaviour of engineering components. Computer simulation showed similar results, including the “cross-over” speed/load when the lower viscosity oils start to show lower friction.
Technical Paper

Influence Of Top Ring End Gap Types At Blow-By Of Internal Combustion Engines

1993-10-01
931669
The gas that flows from the combustion chamber to crankcase of internal combustion engines (“Blow-By”) and the reverse flow (“Blow-Back”) have detrimental effects in the engine power, pollutant emissions and lubricant degradation. A main factor to control this flow is the first piston ring gap. The influence of the area defined by the gap, specially of the chamfer at end gap, is analyzed by computer simulation and dynamometer tests. An unusual type of piston ring contact face coating at end gap, allows a reduction of up to 50% in the ring gap area and engine Blow-By.
Technical Paper

Piston Ring Conformability in a Distorted Bore

1996-02-01
960356
Some different equations to calculate the maximum deformation that a given ring can conform to, are found in the bibliography. These equations do not consider the ring end gap and ovality, gas pressure acting on it, nor the actual bore shape, but only the maximum amplitude for a given term (from a Fourier Series that describes the bore shape). A more exact prediction can be done with Finite Element tools or specific codes for piston ring simulation; those approaches are not usually carried out, except in special cases or in more fundamental studies. Experimental measurements were carried out to verify the simple conformability criteria. Deformed shapes were produced in a static jig and areas of “non contact”, between ring and the deformed bore shapes, were measured. Based on these measurements, a semi-empirical equation is proposed to calculate the limit of piston ring conformability.
Technical Paper

Modelling of the Asperity Contact Area on Actual 3D Surfaces

2005-04-11
2005-01-1864
The Greenwood model has been extensively used for calculation of the asperity pressures under mixed lubrication conditions, but usually assuming that the surfaces are gaussian. In this work, the Greenwood parameters are calculated from actual, non-gaussian, engine surfaces measured by White Light Interferometer. Results from 2D profiles and 3D measurements are compared. An improved way to calculate the Greenwood parameters and to apply them for estimation of the contact area and pressure is described. To illustrate the methodology, some examples of topography characterization and modeling for engine liners are presented. The influence of the asperity summit height average on the predicted contact area calculation is discussed. To explore and validate the proposed method, several WLI measurements from different engine HDD liners were analyzed using a proprietary code.
Technical Paper

Folded Metal Effect on Lubricant Film Thickness and Friction Using a Mixed Lubrication Deterministic Model

2014-09-30
2014-36-0302
Despite the influence of folded metal material on the lubrication performance of engine cylinder liners has been largely investigated, its effect has not been isolated yet in terms of other surface parameters as Sa, Sq, Vo, Rpk etc. In the present contribution, the isolated effect of folded metal on the performance of engine cylinder liners was investigated by comparing the hydrodynamic and asperity contact pressures through a deterministic mixed lubrication model. From that, the friction coefficients and the engine friction losses were also estimated. The topography of a production car engine block was characterized employing a Non-Contact Surface Profiler System. Folded metal was quantified using in-house algorithms, and so its occurrences were digitally removed. Afterwards, the surfaces with and without folded metal were studied with the deterministic model.
X