Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Piston Ring Tribological Challenges on the Next Generation of Flex-fuel Engines

2010-05-05
2010-01-1529
With the current use of bio-renewable fuel, the application of Ethanol in Flex-Fuel vehicles presents a very low CO2 emission alternative when the complete cycle, from plantation, fuel production, till vehicle use, is considered. In Brazil more than 80% of the car production is composed of Flex-Fuel vehicles. Due to the lower heating content of the Ethanol, more aggressive combustion calibrations are used to obtain the same engine power than when burning gasoline. Such Ethanol demands, associated with the continuous increase of engine specific power has lead to thermo-mechanical loads which challenges the tribology of piston rings. The ethanol use brings also some specific tribological differences not very well understood like fuel dilution in the lube oil, especially on cold start, corrosive environment etc. Under specific driving conditions, incipient failures like spalling on nitrided steel top rings have been observed.
Technical Paper

Powertrain Friction Reduction by Synergistic Optimization of Cylinder Bore Surface and Lubricant - Part 2: Engine Tribology Simulations and Tests

2021-09-21
2021-01-1217
In the present work, a system approach to the tribological optimization of passenger car engines is demonstrated. Experimental data and simulation results are presented to demonstrate the role of surface specifications, ring pack, and lubricant on the piston/bore tribology. The importance of in-design “pairing” of low-viscosity motor oils with the ring pack and the cylinder bore characteristics in order to achieve maximum reduction in GHG emissions and improvement in fuel economy without sacrificing the endurance is elucidated. Earlier motored friction data for two different gasoline engines - Ford Duratec and Mercedes Benz M133 - using motor oils of different viscosity grades are now rationalized using AVL EXCITE® piston/bore tribology simulations. The main difference between the engines was the cylinder bore surface: honed cast iron vs thermally sprayed, and the valve train type: direct-acting mechanical bucket (DAMB) vs roller finger follower (RFF).
Technical Paper

A new tribology test procedure to investigate ethanol dilution on engine oils

2018-09-03
2018-36-0090
With the worldwide trend towards CO2 emission reduction, renewable fuels such as ethanol are gaining further importance. However, the use of ethanol as a fuel can bring some tribological impacts. Friction and wear of engine parts when lubricants are contaminated with ethanol are not very well understood. Within this scenario, the present paper introduces a new procedure to investigate the ethanol dilution on the performance of engine oils. Friction and wear of actual piston ring and liner were evaluated in a reciprocating test designed to emulate real thermomechanical conditions of both urban and highway car use. In addition to fresh oil, lubricant/ethanol emulsions were prepared carefully following two different procedures - unheated and heated mixing. The former to emulate cold start and “bakery” driving use, the latter to reproduce what happens after the engine heats in normal conditions.
Technical Paper

Impact of Lubricant Viscosity and Additives on Engine Fuel Economy

2014-09-30
2014-36-0507
Many countries are introducing fuel economy regulations in order to reduce the average emissions of light duty vehicles, since fuel consumption of vehicles is an important factor in air pollution. The lubricant has a significant role in reducing friction losses hence the fuel consumption, but the impact depends on the engine operation regime and the manner in which the lubricant components work together to change frictional properties. Different driving cycles are used by different countries and organizations to measure fuel consumption. The most common driving cycles are the European NEDC and the North American FTP-75 vehicle transient cycles. Fuel economy at full load and BSFC (Brake Specific Fuel consumption) are also common methods of measuring engine fuel economy.
Technical Paper

Use of tribological and AI models on vehicle emission tests to predict fuel savings through lower oil viscosity

2022-02-04
2021-36-0038
On urban and emission homologation cycles, engines operate predominantly at low speeds and part loads where engine friction losses represent around 10% of the consumed fuel energy but would account for 25% of the fuel consumption once combustion efficiency is taken into account. Under such mild conditions, engine and engine oil temperatures are also lower than ideal. The influence of oil viscosity on friction losses are significant. By reducing lubricant viscosity, engine friction, fuel consumption and emissions are reduced. Tribological and machine learning models were investigated to predict the effect of oil viscosity on fuel consumption during the FTP75 emission cycle with the use of detailed actual emission test measurements. Oil viscosity was calculated with the measured oil temperature. As the same vehicle transient is followed in the cold and hot phases, the models were evaluated by comparing their prediction of fuel consumption in the hot phase versus the measured value.
X