Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Optimal Control of Mass Transport Time-Delay Model in an EGR

2020-04-14
2020-01-0251
This paper touches on the mass transport phenomenon in the exhaust gas recirculation (EGR) of a gasoline engine air path. It presents the control-oriented model and control design of the burned gas ratio (BGR) transport phenomenon, witnessed in the intake path of an internal combustion engine (ICE), due to the redirection of burned gases to the intake path by the low-pressure EGR (LP-EGR). Based on a nonlinear AMESim® model of the engine, the BGR in the intake manifold is modeled as a state-space (SS) output time-delay model, or alternatively as an ODE-PDE coupled system, that take into account the time delay between the moment at which the combusted gases leave the exhaust manifold and that at which they are readmitted in the intake manifold. In addition to their mass transport delay, the BGRs in the intake path are also subject to state and input inequality constraints.
Technical Paper

Energy Wall Losses Estimation of a Gasoline Engine Using a Sliding Mode Observer

2012-04-16
2012-01-0674
This paper describes an innovative method to estimate the wall losses during the compression and combustion strokes of a gasoline engine using the cylinder pressure measurement. The estimation during the compression and combustion strokes allows to better represent the system during the combustion. A sliding mode observer is derived from a validated 0-D physical engine model and its convergence and stability are proved. The observer is validated using two different engine models: a one zone engine model and a two zones engine model with flame wall interaction. A good agreement between the estimation results and the model reference is observed, showing the interest of using closed loop strategies to estimate the wall losses in a SI engine.
Technical Paper

Restriction Model Independent Method for Non-Isentropic Outflow Valve Boundary Problem Resolution

2012-04-16
2012-01-0676
To meet the new engine regulations, increasingly sophisticated engine alternative combustion modes have been developed in order to achieve simultaneously the emission regulations and the required engine drivability. However, these new approaches require more complex, reliable and precise control systems and technologies. The 0-D model based control systems have proved to be successful in many applications, but as the complexity of the engines increases, their limitations start to affect the engine control performance. One of the 0-D modeling limitations is their inability to model mass transport time. 1-D modeling allows some of the 0-D models limitations to be overcome, which is the motivation of this work. In this paper, two quasi-steady outflow boundary models are developed: one is based on the isentropic contraction and the other on a momentum conservation approach. Both are compared with computational fluid dynamics (CFD) 3-D simulations.
Technical Paper

Intra-Pipe Restriction Non-Homentropic Boundary Resolution Method

2013-04-08
2013-01-0582
A complete non-homentropic boundary resolution method for a flow upstream and downstream an intra-pipe restriction is considered in this article. The method is capable of introducing more predictable quasi-steady restriction models into the boundary problem resolution without adding artificial discharge coefficients. The traditional hypothesis of isentropic contraction, typically considered for the boundary resolution, is replaced by an entropy corrected method of characteristics (MOC) in order to be consistent with a non-homentropic formulation. The boundary resolution method is designed independently of the quasi-steady restriction models which allows obtaining a greater modeling flexibility when compared with traditional methods. An experimental validation at unsteady conditions is presented using different restriction quasi-steady models to illustrate the effectiveness of the proposed boundary resolution method in terms of predictability as well as flexibility.
X