Refine Your Search

Search Results

Viewing 1 to 4 of 4
Video

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-06-18
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Technical Paper

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-04-16
2012-01-1114
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9-liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Technical Paper

Coordinated Air-Fuel Path Control in a Diesel-E85 RCCI Engine

2019-04-02
2019-01-1175
Reactivity Controlled Compression Ignition (RCCI) combines very high thermal efficiencies with ultra-low engine out NOx and PM emissions. Moreover, it enables the use of a wide range of fuels. As this pre-mixed combustion concept relies on controlled auto-ignition, closed-loop combustion control is essential to guarantee safe and stable operation under varying operating conditions. This work presents a coordinated air-fuel path controller for RCCI operation in a multi-cylinder heavy-duty engine. This is an essential step towards real-world application. Up to now, transient RCCI studies focused on individual cylinder control of the fuel path only. A systematic, model-based approach is followed to design a multivariable RCCI controller. Using the Frequency Response Function (FRF) method, linear models are identified for the air path and for the combustion process in the individual cylinders.
Technical Paper

Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas

2014-04-01
2014-01-1318
Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as low-cetane fuel. Limited results have been published using natural gas as low-cetane fuel; especially full scale engine results. This study presents results from an experimental study of diesel-CNG RCCI operation on a 6 cylinder, 8 l heavy duty engine with cooled EGR. This standard Tier4f diesel engine was equipped with a gas injection system, which used single point injection and mixed the gaseous fuel with air upstream of the intake manifold. For this engine configuration, RCCI operating limits have been explored. In the 1200-1800 rpm range, RCCI operation with Euro-VI engine out NOx and soot emissions was achieved between 2 and 9 bar BMEP without EGR.
X