Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Technical Paper

Study of Automotive Diesel Injection-System Dynamics Under Control

1996-10-01
962020
Cycle-resolved numerical and experimental analyses were carried out to study the dynamics of an automotive diesel injection system with a distributor-type pump during transient control phases. The investigation had the following main objectives: to assess a flexible and efficient simulation program of high-pressure fuel-injection systems in unsteady operating conditions; to examine the system response to rapid load or speed variations, regardless of the control device which may cause them. The program, based on a fast implicit numerical algorithm with second-order accuracy, was an extension of the computational code NAIS which had been previously developed and validated for stationary operating conditions. The experiments were made on a test bench usually used by industry to evaluate diesel injection equipment.
Technical Paper

Impact of Different LCI Modelling Scenarios on the LCA Results, A Case Study for the Automotive Sector

2023-04-11
2023-01-0884
Since vehicles are comprised of thousands of components, it is essential to reduce the Life Cycle Inventory (LCI) modelling workload. This study aims to compare different LCI modeling workload-reducing scenarios to provide a trade-off between the workload efforts and result accuracy. To achieve the optimal balance between computational effort and data specification requirements, the driver seat is used as a case study, instead of the entire vehicle. When all the components of a conventional light-duty commercial vehicle are sorted by mass descending order, seats are among the first five. In addition, unlike the other components, seats are comprised of metals as well as a wide range of plastics and textiles, making them a representative test case for a general problem formulation. In this way, methodology and outcomes can be reasonably extended to the entire vehicle.
X