Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Simple Modeling of Autoignition in Diesel Engines for 3-D Computations

1993-10-01
932656
For practical, extensive 3-D computations for engine improvements, each physical submodel needs to be the simplest that is compatible with the accuracy of all other physical submodels and of the numerics. The addition of one progress variable controlled by one Arrhenius term is shown to be adequate to reproduce Diesel ignition delay in 2-D and 3-D computations. The rest of the model is that used for years by the authors to optimize combustion in reciprocating and rotary engines with premixed and non-premixed charges, including all of its model constants. This minimal Diesel autoignition submodel reproduces well trends and magnitudes of ignition delay versus chamber temperature and pressure. As in experiments, it is found that multiple ignition sources develop in rapid succession at various locations around the fuel spray after the first ignition event.
Technical Paper

Combustion Optimization Computations-Part I: Swirl and Squish Effects in Air-Assist Injection Engines

1992-10-01
922240
Results are presented of two-dimensional computations of air-assist fuel injection into engines with bowl-in-piston and bowl-in-head, with and without swirl and for early and late injection but without combustion. The general finding is that swirl tends to destroy the head vortex of the air/fuel jet and results in a faster collapse of the spray cone toward its axis. Faster collapse is also promoted by high density of the chamber gas (e.g. late injection) and bowl-in-head design (limited availability of chamber gas around the spray, presence of walls and delayed influence of squish by the injector). With enhanced collapse, fuel-rich regions are formed around the axis and away from the injector. With reduced collapse, the radial distribution of the fuel is more uniform. Thus swirl tends to lead to both slower vaporization and richer vapor mixtures. Also, with strong swirl the rich mixtures tend to end up by the injector; without swirl, by the piston.
Technical Paper

2-D Visualization of Liquid Fuel injection in an Internal Combustion Engine

1987-11-01
872074
A sheet of laser light from a frequency-doubled Nd-YAG laser (λ = 532 nm) approximately 150 μm thick is shone through the cylinder of a single cylinder internal combustion engine. The light scattered by the fuel spray is collected through a quartz window in the cylinder and is imaged on a 100 × 100 diode array camera. The signal from the diode array is then sent to a microcomputer for background subtraction and image enhancement. The laser pulse is synchronized with the crank shaft of the engine so that a picture of the spray distribution within the engine at different times during injection and the penetration and development of the spray may be observed. The extent of the spray at different positions within the chamber is determined by varying the position and angle of the laser sheet with respect to the piston and the injector.
X