Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

On the Quantitative Application of Exciplex Fluorescence to Engine Sprays

1993-03-01
930870
The exciplex fluorescence technique has been used to separately visualize liquid and vapor phase fuel in engines since its development by Melton. However, as a fluorescence technique it has the potential to be quantitative and the underlying assumptions have been outlined by Melton. An initial quantitative application of the TMPD/naphthalene system, based on these assumptions, applied to a hollow-cone spray in a two-stroke engine, indicated that it substantially over-estimates the concentration of fuel vapor about TDC. The reasons for the discrepancy were investigated and it was concluded that a major factor is the effect of temperature on the photophysics of the species involved. Thus the absorption spectra of the exciplex dopants were determined at temperatures up to 700 K. These experiments showed that the increase in absorption with temperature above 500 K is responsible for the failure of the earlier calibration.
Technical Paper

Investigation of the Fuel Distribution in a Two-Stroke Engine with an Air-Assisted Injector

1994-03-01
940394
Results of experiments performed on a direct-injection two-stroke engine using an air-assisted injector are presented. Pressure measurements in both the engine cylinder and injector body coupled with backlit photographs of the spray provide a qualitative understanding of the spray dynamics from the oscillating poppet system. The temporal evolution of the spatial distribution of both liquid and vapor fuel were measured within the cylinder using the Exciplex technique with a new dopant which is suitable for tracing gasoline. However, a temperature dependence of the vapor phase fluorescence was found that limits the direct quantitative interpretation of the images. Investigation of a number of realizations of the vapor field at a time typical of ignition for a stratified-charge engine shows a high degree of cycle to cycle variability with some cycles exhibiting a high level of charge stratification.
Technical Paper

Application of Two-Color Particle Image Velocimetry to a Firing Production Direct-Injection Stratified-Charge Engine

1999-03-01
1999-01-1111
A two-color Particle Image Velocimetry (PIV) technique has been applied for the first time to a firing, production, three-cylinder, two-stroke, direct-injection stratified-charge engine operated under realistic conditions. In comparison to single color PIV, two-color PIV can resolve the directional ambiguity of the velocity by cross-correlating two digitized photographic images of a particle-seeded flow field, acquired sequentially at two different light wavelengths. Such an approach is essential in complex, a priori unknown, flow fields, such as those of most I.C. engines. To gain optical access to the combustion chamber, the engine head was equipped with two optical windows in such a way that its original geometry was practically undisturbed. Although the field of view was relatively small, it covered a critical area of the combustion chamber. The measurements were made in the plane perpendicular to the engine longitudinal axis, within the crank angle range of 70 to 10 degrees BTDC.
X