Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

3-D Computations of Premixed-Charge Natural Gas Combustion in Rotary Engines

1991-02-01
910625
A three-dimensional model for premixed- charge naturally-aspirated rotary engine combustion is used to identify combustion chamber geometries that could lead to increased indicated efficiency for a lean (equivalence ratio =0.75) natural gas/air mixture. Computations were made at two rpms (1800 and 3600) and two loads (approximately 345 Kpa and 620 Kpa indicated mean effective pressure). Six configurations were studied. The configuration that gave the highest indicated efficiency has a leading pocket with a leading deep recess, two spark plugs located circumferentially on the symmetry plane (one after the minor axis and the other before), a compression ratio of 9.5, and an anti-quench feature on the trailing flank.
Technical Paper

3-D Computations to Improve Combustion in a Stratified-Charge Rotary Engine Part IV: Modified Geometries

1993-03-01
930679
A three-dimensional model for a direct injection stratified-charge rotary engine has been employed to study two modifications to the pocket geometry of the engine. In one modification, a pocket is located towards the leading edge of the rotor and is shown to produce recirculation within the pocket and faster burning. In the second modification, a two pocket rotor with two injectors and two spark plugs is studied. It appears that this should result in better utilization of the chamber air. It also appears that both modifications rhould result in higher efficiency of the direct-injected stratifiedcharge rotary engine. However extensive computations are required before a final conclusion is reached and before specific recommendations can be made.
Technical Paper

Simple Modeling of Autoignition in Diesel Engines for 3-D Computations

1993-10-01
932656
For practical, extensive 3-D computations for engine improvements, each physical submodel needs to be the simplest that is compatible with the accuracy of all other physical submodels and of the numerics. The addition of one progress variable controlled by one Arrhenius term is shown to be adequate to reproduce Diesel ignition delay in 2-D and 3-D computations. The rest of the model is that used for years by the authors to optimize combustion in reciprocating and rotary engines with premixed and non-premixed charges, including all of its model constants. This minimal Diesel autoignition submodel reproduces well trends and magnitudes of ignition delay versus chamber temperature and pressure. As in experiments, it is found that multiple ignition sources develop in rapid succession at various locations around the fuel spray after the first ignition event.
Technical Paper

Fuel-Air Mixing and Distribution in a Direct-Injection Stratified-Charge Rotary Engine

1989-02-01
890329
A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6% at higher loads and 2% at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.
Technical Paper

3-D Computations to Improve Combustion in a stratified-Charge Rotary Engine Part II: A Better Spray Pattern for the Pilot Injector

1989-09-01
892057
A three-dimensional combustion model of a direct-injection stratified-charge rotary engine is used to identify modifications that might lead to better indicated efficiency. The engine, which has a five-hole main injector and a pilot injector, is predicted to achieve better indicated efficiency if a two-hole ‘rabbit-ear’ pilot injector is used instead of its present single-hole pilot injector. This rabbit-ear arrangement is predicted to increase the surface area of the early flame (on account of better distribution of the fuel), and thereby result in an increased overall burning rate. Computations were made at high and low engine speeds and loads, encompassing the practical operating range. It is concluded that the modified pilot injector will increase indicated efficiency by about 5% within the computed operating range.
Technical Paper

Comparisons of Computed and Measured Pressure in a Premixed-Charge Natural-Gas-Fueled Rotary Engine

1989-02-01
890671
The combustion chamber pressure computed with a three-dimensional model is compared with the measured one in a rotary engine fueled with mixtures of natural gas and air. The rotary engine has a rotor displacement of 654 cm3, a compression ratio of 9.4 and uses 2 ignition sparks. The model incorporates a k-ϵ submodel for turbulence, wall function submodels for turbulent wall boundary layer transport, and a hybrid laminar/mixing controlled submodel for species conversion and energy release. Nine cases are considered that cover a wide range of engine operating conditions: rpm of 2503-5798, volumetric efficiency of 35.7-100.5% and equivalence ratio of 0.59-1.15. In all cases the computed and measured pressures agree within 12%.
X