Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Stratified Diesel Fuel-Water-Diesel Fuel Injection Combined with EGR-The Most Efficient In-Cylinder NOx and PM Reduction Technology

1997-10-01
972962
For meeting 21st-century exhaust emission standards for HD diesel engines, new methods are necessary for reducing NOx and PM emissions without increasing fuel consumption. The stratified diesel fuel-water-diesel fuel (DWD) injection in combination with exhaust gas recirculation (EGR) is as a means for NOx and PM reduction without any negative effect on fuel economy. The investigation was performed on a charged HD single-cylinder direct-injection diesel engine with a modern low-swirl combustion system, 4-valve technology and high pressure injection. The application of DWD injection combined with EGR resulted in a 60 percent lower NOx emission at full load and a 75 percent reduced NOx emission at part load when compared with present day (EURO II) technology. This was achieved without any fuel economy penalty, but with an additional PM emission reduction.
Technical Paper

The Potential of a Combined Miller Cycle and Internal EGR Engine for Future Heavy Duty Truck Applications

1998-02-23
980180
Using an engine simulation code (WAVE) combined with statistical experimental design and optimisation techniques, the potential of a combined Miller cycle and internal EGR heavy duty engine for future truck applications (Euro 3 and 4) has been assessed. The practical issues related to a suitable variable valve timing or actuation system and boosting strategy have been considered. It is found that, whilst internal EGR levels suitable for future European emissions legislation cycles are possible, the boost pressures needed at high load to maintain a suitable air/fuel ratio when running a valve timing strategy to give acceptable levels of in-cylinder temperature (via the Miller system) are beyond the capabilities of current technology. It is believed, however, that such a system may still be suitable for application in markets which have duty cycles less dependent upon full load operation, for example Japan and, possibly, the USA.
X