Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study on the Potential Benefits of an Energy-Regenerative Active Suspension for Vehicles

2005-11-01
2005-01-3564
First, the energy consumption of a passive suspension via damper and the energy demand for an LQG optimal vehicle active suspension are investigated, showing valuable potentials for an active suspension with vibration energy regeneration. Then, the feasibility of energy regenerative approaches is discussed, and an electrical active suspension configuration is proposed with the description of its working principle and structure. The study on feasibility and configuration shows that the proposed configuration and control approach can be an effective approach for the active control and the energy regeneration of vehicle vibration. And potentially, it also can be useful for future electrical suspension design of electrical vehicles.
Technical Paper

Study of Load Distribution for a Semi - Tracked Air - Cushion Vehicle

1999-09-14
1999-01-2788
A new design method is proposed for a semi-tracked air-cushion vehicle for soft terrain by using a flexible bind, which offers more flexibility in designing. This paper describes the design principle focusing on optimizing the total power consumption of the vehicle. The relationships of load distribution and power consumption are analyzed. The prototype experiments showed that the proposed design can meet the demand of tractive and transport efficiency with its optimal state of using minimum total power consumption and meanwhile maintaining ride comfort.
Journal Article

Pitch Control for a Semi-track Air-cushion Vehicle Based on Optimal Power Consumption

2009-04-20
2009-01-1225
A new kind of integrated semi-track air-cushion pitch controller is proposed in this paper. The controller first compute the target working point based on a weighed function, which is the combination of optimal power consumption and pitch angle control demand. Then the sequential quadratic programming algorithm distributes the general target values to specific control values. The performance of the controller is verified through co-simulation between Matlab/Simulink and ADAMS/View. The simulation results show the effectiveness of the control algorithm and the correctness of the choice in physical configuration with two air cushions for vehicle body pitch control.
X