Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Application of Camshaft Rolling Element Bearings as a Solution for CO2 Emission Reduction on Internal Combustion Engines

2012-10-02
2012-36-0254
As a common trend on the automotive development process, the increase in system efficiency became a major concern for design engineers nowadays. Several are the focuses at which such topic can be dealt with, including full systems upgrades, electrification and component level optimization. However, there are simpler ways to increase efficiency by only replacing construction concepts that have always been taken for granted. This is the case of replacing the sliding friction of the camshaft hydrodynamic bearings by rolling elements. The direct reduction of the power consumption, when applying rolling element bearings to the camshaft, is a straightforward method to increase the liquid torque available at the crankshaft, hence enabling downsizing. In this paper some design solutions and the structural integrity of the system will be assessed and, most of all, the reduction on the friction torque, hence the increase in system efficiency, which leads to CO₂ emission reductions.
Technical Paper

Chamshaft Vibration Characteristic Assessment when Applying Needle Roller Bearings as Solution for Efficiency Increase

2012-11-25
2012-36-0628
One of the steps towards higher efficiency internal combustion engines (ICEs) is the application of new improved subsystems, with lower power consumption. One of such subsystems is the needle roller bearing valvetrain, where rolling bearings replace the common sliding bearings designs as camshaft supports, hence decreasing the frictional torque and increasing liquid power at the crankshaft. However, the first question to arise is the vibration characteristic of the system for the new design. In order to initiate the assessment of the vibration behavior of the camshaft, some fundamental investigations should be made, such as natural frequency identification. For that, one might benefit from virtually evaluate these characteristics via FEA / Rotordynamics algorithm, reducing the need for expensive experimental setups of the complete valvetrain. This work intends to assess the applicability of these both methods to the camshaft vibration problem.
X