Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Passenger Car Front Air - Dam Design Based on Aerodynamic and Fuel Economy Simulations

2013-01-09
2013-26-0063
Computational Fluid Dynamics (CFD) is used extensively in the optimization of modern passenger car to meet the ever growing need of higher fuel economy, better engine and underbody cooling. One of the way to achieve better fuel economy is to reduce the vehicle overall resistance to flow, know as drag. Vehicle drag is a complex phenomenon governed by vehicle styling, component shape, layout and driving velocity and road conditions. To reduce the drag a lot of aero-parts are used these days such as air-dam, skirts, spoiler, undercover, dams etc. However the design of these aero-parts must be optimized to get the desired result as their addition alone does not guarantee improvement in performance. This paper aims at studying the effect of air-dam height and position on vehicle aerodynamics. Also the effect of air-dam addition was verified using fuel economy simulations.
Technical Paper

Study on Effect of Ground Clearance on Performance of Aerodynamic Drag Reduction Devices for Passenger Vehicle Using CFD Simulations

2015-01-14
2015-26-0197
Reducing the carbon footprint by meeting stringent emission regulations and improving the fuel efficiency has become an essential feature in 21st century product design cycle for automobiles. Aerodynamic drag affects the fuel efficiency of the vehicle considerably. Various drag reduction devices such as air dam, rim cover, spoiler and undercover etc. are added in order to reduce the drag. This paper aims at understanding the effect of ground clearance on the performance of various aerodynamic drag reduction devices like - air-dam, spoiler, wheel cover and their combinations for hatchback vehicle using Computational Fluid Dynamics (CFD). CFD has been extensively used for exploring the various design configurations and has helped in selecting the optimized aero-parts configuration based on aerodynamic performance at concept stage which has ultimately reduced the vehicle drag coefficient by 10%.
X