Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design and Combustion Characteristics of an Ethanol Homogeneous Charge Torch Ignition System for a Single-cylinder Optical Engine

2016-10-25
2016-36-0130
The trends in the development of spark ignition engines leads to the adoption of lean mixtures in the combustion chamber. Torch ignition systems have potential to reduce simultaneously the NOx and CO emissions, while keeping the fuel conversion efficiency at a high level. This study aims to design and analyze a torch ignition system running with ethanol on lean homogeneous charge, adapted to an Otto cycle single-cylinder engine with optical visualization. The main objective is to achieve combustion stability under lean burn operation and to expand the flammability limit for increasing engine efficiency by means of redesigning the ignition system adapting a pre-chamber to the main combustion chamber. Experiments were conducted at constant speed (1000 rpm) using ethanol (E100) as fuel, for a wide range of injection, ignition and mixture formation parameters. Specific fuel consumption and combustion stability were evaluated at each excess air ratio.
Technical Paper

Lean Burn Combustion Influence on Stratified Charge Ethanol Direct Injection Engine

2016-10-25
2016-36-0306
Direct inject engine provides increased possibilities to work with injection strategies in order to achieve better efficiency. Some ethanol properties such as the higher octane number, the latent heat of vaporization as well as the faster laminar speed made ethanol one of the most promising biofuels. These properties help to achieve knock suppression in a SI engine and therefore allow the use of higher volumetric compression ratio, which is one of the key factors in efficiency improvement. Several studies have showed ethanol as a way to reduce soot formation in direct injection engines as the oxygen molecule reduces the locally fuel-rich region. The use of ethanol contributes significantly to the reduction of total hydrocarbon (THC) and carbon monoxide (CO).
X